Potent neutralization of 2019 novel coronavirus by recombinant ACE2-Ig

This article has been Reviewed by the following groups

Read the full article

Abstract

2019-nCoV, which is a novel coronavirus emerged in Wuhan, China, at the end of 2019, has caused at least infected 11,844 as of Feb 1, 2020. However, there is no specific antiviral treatment or vaccine currently. Very recently report had suggested that novel CoV would use the same cell entry receptor, ACE2, as the SARS-CoV. In this report, we generated a novel recombinant protein by connecting the extracellular domain of human ACE2 to the Fc region of the human immunoglobulin IgG1. An ACE2 mutant with low catalytic activity was also used in the study. The fusion proteins were then characterized. Both fusion proteins has high affinity binding to the receptor-binding domain (RBD) of SARS-CoV and 2019-nCoV and exerted desired pharmacological properties. Moreover, fusion proteins potently neutralized SARS-CoV and 2019-nCoV in vitro. As these fusion proteins exhibit cross-reactivity against coronaviruses, they could have potential applications for diagnosis, prophylaxis, and treatment of 2019-nCoV.

Article activity feed

  1. SciScore for 10.1101/2020.02.01.929976: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.
    Cell Line Authenticationnot detected.

    Table 2: Resources

    Experimental Models: Cell Lines
    SentencesResources
    293T cells transfected with the indicated CoV S glycoprotein genes were preincubated with different fusion proteins at room temperature for 15 min, then mixed with 293T cells transfected with ACE2 at 1:1 ratio and incubated at 37°C for 4 h.
    293T
    suggested: None
    Experimental Models: Organisms/Strains
    SentencesResources
    TIGIT-Ig, which were described in our pervious report13, served as a control in our study.
    report13
    suggested: None
    Pharmacokinetics: We used BALB/c mice to determine the pharmacokinetic profile of the fusion protein.
    BALB/c
    suggested: RRID:IMSR_ORNL:BALB/cRl)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.