Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Background

A novel coronavirus (2019-nCoV) associated with human to human transmission and severe human infection has been recently reported from the city of Wuhan in China. Our objectives were to characterize the genetic relationships of the 2019-nCoV and to search for putative recombination within the subgenus of sarbecovirus.

Methods

Putative recombination was investigated by RDP4 and Simplot v3.5.1 and discordant phylogenetic clustering in individual genomic fragments was confirmed by phylogenetic analysis using maximum likelihood and Bayesian methods.

Results

Our analysis suggests that the 2019-nCoV although closely related to BatCoV RaTG13 sequence throughout the genome (sequence similarity 96.3%), shows discordant clustering with the Bat-SARS-like coronavirus sequences. Specifically, in the 5’-part spanning the first 11,498 nucleotides and the last 3’-part spanning 24,341-30,696 positions, 2019-nCoV and RaTG13 formed a single cluster with Bat-SARS-like coronavirus sequences, whereas in the middle region spanning the 3’-end of ORF1a, the ORF1b and almost half of the spike regions, 2019-nCoV and RaTG13 grouped in a separate distant lineage within the sarbecovirus branch.

Conclusions

The levels of genetic similarity between the 2019-nCoV and RaTG13 suggest that the latter does not provide the exact variant that caused the outbreak in humans, but the hypothesis that 2019-nCoV has originated from bats is very likely. We show evidence that the novel coronavirus (2019-nCov) is not-mosaic consisting in almost half of its genome of a distinct lineage within the betacoronavirus. These genomic features and their potential association with virus characteristics and virulence in humans need further attention.

Article activity feed

  1. SciScore for 10.1101/2020.01.26.920249: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on page 11. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


    Results from rtransparent:
    • No conflict of interest statement was detected. If there are no conflicts, we encourage authors to explicit state so.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.