Rewired signaling network in T cells expressing the chimeric antigen receptor (CAR)

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

Log in to save this article

Abstract

The chimeric antigen receptor (CAR) directs T cells to target and kill specific cancer cells. Despite the success of CAR T therapy in clinics, the intracellular signaling pathways that lead to CAR T cell activation remain unclear. Using CD19 CAR as a model, we report that, similar to the endogenous T cell receptor (TCR), antigen-engagement triggers the formation of CAR microclusters that transduce downstream signaling. However, CAR microclusters do not coalesce into a stable central supramolecular activation cluster (cSMAC). Moreover, LAT, an essential scaffold protein for TCR signaling, is not required for microcluster formation, immunological synapse formation, and actin remodeling following CAR activation. Meanwhile, CAR T cells still require LAT for the normal production of the cytokine IL-2. Together, these data show that CAR T cells can bypass LAT for a subset of downstream signaling outputs, thus revealing a rewired signaling pathway as compared to native T cells.

Article activity feed

  1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Reply to the reviewers

    General comments

    We thank all three reviewers for providing their thoughtful and insightful review comments of our manuscript. We appreciate that the reviewers recognized the significance and impact of our work - “Very little imaging has been done on CAR synapses and to our knowledge this is the first live cell imaging study describing CAR microclustsers” (Reviewer 2); “This is an evolving field and little is known to date. Hence, this study could represent an insightful and important advance to the field” (Reviewer 3). A broad audience from both basic and clinical research sides will be interested in this work: “_This study will have a broad audience. Both scientists that study basic T cell signaling as well as clinicians that use CAR Ts will be interested in this study” (_Reviewer 2); “Audience is to both basic immunologist and cancer biologists” (Reviewer 3).

    Meanwhile, we understand that the reviewers have raised a few major and minor issues, which we attempted to address. Most importantly, as suggested by both reviewer 1 and 3, we performed new experiments showing that LAT is not required for microcluster formation of the 1st generation of CAR (new Fig 4 and EV5). This finding suggests that the CAR-independent signaling is due to the intrinsic CAR architecture, and is not dependent on the co-signaling domains of CD28 and 4-1BB.

    With the successful solutions to other issues, we believe the manuscript has been significantly improved and is ready for publication. Below we will provide point-to-point responses to each reviewer’s comments.

    Reviewer #1 (Evidence, reproducibility and clarity (Required)):

    The authors compare the TCR alone to a CAR that contains signaling modules from three receptors- TCR, CD28 and 41BB. The data quality if good and the experiments done are. The difference is quite clear, and I would even like to see a little more of the evidence related to failure of the TCR system.

    We appreciate the general positive comment of this reviewer.

    More specifically:

    Su and colleagues show that a third generation CAR with TCR zeta, CD28 and 41BB signal transduction pathways can activate a T cell for microcluster formation and Gads/SLP-76 recruitment, but not IL-2 production, without LAT. This is surprising because LAT is generally considered, as is up held here, as an essential adapter protein for T cell activation. However, this is not a "fair" experiment as the CAR has sequences from TCR, and two co-stimulatory receptor- CD28 and 41BB. It would be important and very straight-forward to test first and second generation CARs to determine if LAT independence is a function of the CAR architecture itself, or the additional costimulatory sequences. If it turns out that a first generation CAR with only TCR sequences can trigger LAT independent clustering and SLP-76 recruitment then the comparison would be fair and no additional experiment would be needed to make the point that the CAR architecture is intrinsically LAT independent. If the CD28 and/or 41BB sequences are needed for LAT independence then the fair comparison would be to co-crosslink TCR, CD28 and 41BB (an inducible costimulator such that anti-CD27 might be substituted to have a constitutively expressed receptor with this similar motifs) should be cross-linked with the TCR to make this a fair comparison between the two architectures.

    We agree with the reviewer that it is critical to make a “fair” comparison between TCR and CAR by testing the 1st generation CAR, which only contains the TCR/CD3z domain. Our new data showed that LAT is not required for microcluster and synapse formation of the 1st generation of CAR, in both Jurkat and primary T cells (new Fig 4 and EV5). This result is similar to our previously reported result from the 3rd generation CAR, although the 1st generation CAR induced less IL-2 production and CD69 expression in LAT null cells than the 3rd generation CAR did (new Fig 6). This suggests that the LAT-independent signaling is intrinsic to the CAR architecture, as the reviewer suggested. The co-signaling domains from CD28 and 4-1BB contribute to, but are not required for bypassing LAT to transduce the CAR signaling.

    The authors may want to cite work from Vignali and colleagues that even the TCR has two signaling modules- the classical ZAP-70/LAT module that is responsible to IL-2 and a Vav/Notch dependent module that controls proliferation. Its not clear to me that the issue raised about distinct signaling by CARs is completely parallel to this, but its interesting that Vignali also associated the classical TCR signaling pathway as responsible for IL-2 with an alterive pathways that uses the same ITAMs to control distinct functions. See Guy CS, Vignali KM, Temirov J, Bettini ML, Overacre AE, Smeltzer M, Zhang H, Huppa JB, Tsai YH, Lobry C, Xie J, Dempsey PJ, Crawford HC, Aifantis I, Davis MM, Vignali DA. Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nat Immunol. 2013;14(3):262-70.

    We appreciate the reviewer’s mentioning this paper from Vignali’s group. It provides insights into understanding LAT-independent signaling in CAR T cells. We cited this paper and added a discussion about the mechanism of LAT-independent signaling.

    I would be very interested to see a movie of the LAT deficient T cells interacting with the anti-CD3 coated bilayers in Figure 2A. Since OKT3 has a high affinity for CD3 and is coated on the surface at a density that should engage anti-CD3 I'm surprised there is no clustering even simply based on mass action. The result looks almost like a dominant negative effect of LAT deficiency on a high affinity extracellular interaction. It would be interesting to see how this interface evolves or if there is anti-adhesive behavior that emerges.

    We now presented a movie showing the detailed process of LAT deficient GFP-CAR T cells landing on the bilayers coated with OKT3 (new Movie EV5), in which the bright field images delineate the locations of the cells, the OKT3 signal marks TCR, and the GFP signal marks CAR proteins on the plasma membranes. No TCR clusters (as indicated by OKT3) were formed during the landing process. We think the binding of bilayer-presented OKT3 to TCR is not sufficient to trigger TCR microclusters. However, TCR microclusters could form in LAT-deficient cells if OKT3 is presented by glass surface. This point is raised by reviewer 2. We added a discussion on the difference between bilayer and glass-presented OKT3 in inducing microcluster formation.

    Reviewer #1 (Significance (Required)):

    While it interesting that the CAR is LAT independent, its obvious that the signalling networks are different as the CAR has two sets of motifs that are absent in the TCR, so the experiments as presented are not that insightful about the specific nature of the differences that lead to the different outcomes. At present its not a particularly well controlled experiment as the third gen CAR is changing too many things in relation to the TCR for the experiment to be interpreted. It would be easy to address this is a revised manuscript. To publish as is the discussion would need to acknowledge these limitations. The work is preliminary as science, but it might be useful to T cell engineering field to have this information as a preliminary report, which might be an argument for adding discussion of limitations, but going forward without more detailed analysis of mechanism.

    This is an excellent point and we have addressed it. See our response above on the new data of the 1st generation CAR.

    Reviewer #2 (Evidence, reproducibility and clarity):

    Summary:

    Provide a short summary of the findings and key conclusions (including methodology and model system(s) where appropriate).

    In this study, the authors have interrogated CAR signaling by imaging CD19-CAR microclusters as well as T cell signaling molecules recruited to CAR microclusters. They report differences spatial assembly between CAR and TCR microclusters that form on a lipid bilayer containing ligand. They also report that LAT is not required for CAR microcluster formation, recruitment of downstream signaling molecules or IL-2 production in Jurkat cells, while in primary T cells IL-2 production by CARs show more of a LAT dependence. From these observations, they conclude that CAR T cells have a rewired signaling pathway as compared to T cells that signal through the TCR.

    Major comments:

    • Are the key conclusions convincing?

    The conclusions made by the authors about CAR microclusters are convincing. However, the conclusion that there is a "rewired signaling network" different from TCR microclusters needs to be more convincingly demonstrated in side-by-side comparisons of TCR and CAR microclusters and synapses.

    1. One of the key conclusions in this study is that CAR microclusters form in the absence of LAT, but TCR microclusters require LAT (in JCam2.5 cells in Fig. 2 and primary T cells in Fig. 4B). The requirement of LAT for formation of TCR microclusters is surprising, given multiple reports (one of which the authors have cited) that TCRz and ZAP70 clusters form normally in the absence of LAT (pZAP microclusters form normally in JCam2.5 cells Barda-Saad Nature Immunology 2005 Figure 1; TCRz clusters form normally in LAT CRISPR KO Jurkat cells Yi et al., Nature Communications, 2019 Figure 5). The authors should carefully evaluate TCRz and ZAP70 clusters (that form upstream of LAT) in their assays.

    We thank the reviewer for raising this excellent point. LAT-independent TCR clusters were reported in the two papers mentioned by the reviewer, which we think is convincing. However, there is a key difference in the experimental settings between these two papers and ours. We use supported lipid bilayer to present MOBILE TCR-activating antibody to activate T cells, whereas these two papers used IMMOBILE TCR-activating antibody attached to the cover glass. We reasoned that the mobile surface of supported lipid bilayer more closely mimics the antigen-presenting cell surface where antigens are mobile on the membrane. We added a new discussion about the difference between supported lipid bilayer and cover glass-based activation.

    We agree with the reviewer on the careful evaluation of TCR and ZAP70 clusters. We had showed the data of TCR clusters as marked by TCR-interacting OKT3 (Fig 3A). We performed new experiments on ZAP70 clusters (new Fig EV3). Our data suggest that, similar to TCR clusters, ZAP70 clusters are not formed in LAT-deficient T cells, if activated by OKT3, but are formed if activated by CD19.

    1. The authors make major conclusions about LAT dependence and independence of TCR and CAR microclusters respectively, by using JCam2.5 Jurkat cells and CRISPR/Cas9 edited primary cells. Of relevance to this conclusion, differences in the phosphorylation status of ZAP70 and SLP76 have been described between JCam2.5 cells lacking LAT (in which LAT was found to be deleted by gamma radiation) and J.LAT cells (in which LAT was specifically deleted by CRISPR/Cas9 in Lo et al Nature Immunology 2018). Of importance, pZAP and pSLP76 appeared fairly intact in J.LAT cells, but absent in JCam2.5 cells (Lo et al., Nat Immunol. 2018, Supp Fig 2). Therefore, the authors should evaluate TCRz, ZAP70, Gads and SLP76 in TCR and CAR microclusters in J.LAT cells. This may partly explain the discrepancy in LAT requirement for IL-2 production in JCam2.5 cells and primary cells with LAT CRISPRed out.

    Jcam2.5 is a classical well-characterized LAT-deficient cell line that has been continuously used in the T cell signaling field (Barda-Saad Nature Immunology 2005, Rouquette-Jazdanian A, Mol. Cell, 2012; Balagopalan L, J Imm. 2013; Carpier J, J Exp Med, 2018; Zucchetti A, Nat. Comm. 2019). We agreed with the concern that the reviewer raised on the absence of pZAP70 and pSLP76 in JCam2.5 cells. As the reviewer suggested, we obtained J.LAT, which is LAT null but has intact pZAP70 and pSLP76. We introduced CAR into J.LAT and the wild-type control and performed the clustering assay as we did for Jcam2.5. Our results showed that, similar to Jcam2.5, CAR forms robust microclusters in J.LAT cells (new Fig EV2). More importantly, we presented data confirming the LAT-independent CAR clustering, SLP76 phosphorylation, and IL-2 production in human primary T cells (Fig 7). Therefore, the data from three independent cell sources support our conclusion on LAT-independent CAR signal transduction.

    1. Since the authors are reporting differences between CAR synapses and TCR synapses, the authors should show side by side comparison of CAR and TCR synapses in Figure 1F.

    We focused on characterizing CAR synapse in this manuscript and did not make any conclusion on the difference between TCR and CAR synapse. We are cautious about comparing CAR synapse to TCR synapse for technical reasons: it is critical to use antigen-specific TCRs (e.g. mouse OTI as a common model) to study the TCR synapse pattern so that the study will be physiologically relevant. However, we use human T cell line and human primary T cells for the CAR study. The technical barrier to introduce an antigen-specific TCR complex into these cells, and to activate these cells by purified peptide-MHC complex, is very high. And the result is interesting, but beyond the scope of the current work.

    1. The authors should evaluate Gads microcluster formation in response to TCR stimulation via OKT3 (in Figure 4A). Given that it has been reported that TCRz, Grb2 and c-Cbl are recruited to microclusters in Jurkat cells lacking LAT by CRISPR deletion (Yi et al., Nature Communications, 2019), it is important to establish the differences between TCR microclusters and CAR microclusters in side by side comparisons in their assay system.

    As the reviewer suggested, we evaluated Gads microcluster formation with TCR stimulation and found that Gads did not form microclusters in LAT-deficient cells (new Fig 5A). Because we only made conclusions on the Gads-SLP76 pathway, we think investigating Grb2 and c-Cbl microcluster, though interesting, is beyond the scope of this manuscript.

    1. Similar to the comment about Gads above, the authors should evaluate pSLP76 microcluster formation in response to TCR stimulation via OKT3 in primary T cells lacking LAT in Figure 4C, i.e. side by side comparisons of pSLP76 in TCR and CAR synapses (with and without LAT) should be shown.

    We totally agree and performed new experiment on pSLP76 in human primary T cells. Our data suggested that, similar to Jurkat, pSLP76 microclusters remain intact in LAT null primary cells (new Fig 7D and 7E).

    • Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether?
    1. The data shown in Figure 3C shows a reduction in conjugate formation from 80% (WT) to 30% (LAT -). This is a severe reduction and does not support the authors' claim in the corresponding Figure legend that "LAT is dispensable for cell conjugate formation between Jurkat T cells expressing CAR and Raji B cells" and the Abstract that "LAT.....is not required for....immunological synapse formation". Statistical analysis for variance should be shown here.

    We agree with the reviewer’s judgement. This cell conjugation analysis was performed using Jcam2.5 cells. As pointed by the reviewer, Jcam2.5 has additional defects in ZAP70 and SLP76 in addition to the lack of LAT. Therefore, we performed the same analysis again using J.LAT cells, which was recommended by the reviewer. Our new data showed that J.LAT cells form conjugates with Raji B cells in a similar rate as the wild-type cells do, as evaluated by statistical analysis (new Fig 6A). Therefore, we think these new data support the claim that LAT is dispensable for cell conjugate formation.

    1. In a similar vein, based on data from Movie S5 (where in a single cell, CAR microclusters translocate from cell periphery to center), and Figure 3C where (as described above in point 1) conjugate formation appears to be severely reduced, the authors conclude in the Results and Abstract that "LAT....is not required for actin remodeling following CAR activation". This conclusion is not supported by the data and the authors should remove this claim. Alternatively, actin polymerization in CAR expressing cells (that are LAT sufficient and deficient) can be easily evaluated using phalloidin or F-Tractin.

    As suggested by the reviewer, we evaluated actin polymerization in TCR or CAR stimulated cells using a filamentous actin reporter F-tractin. Our data showed that LAT is required for TCR-induced but not CAR-induced actin polymerization (new Fig 5C). Therefore, our results support the claim that LAT is not required for actin remodeling following CAR activation.

    • Would additional experiments be essential to support the claims of the paper?
      Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.

    Yes. Please see major comments above.

    • Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments.

    Yes. It should take 3 months to complete these experiments, since reagents and experimental systems to do these experiments already exist.

    • Are the data and the methods presented in such a way that they can be reproduced?
      Yes. Methods are clearly explained.

    We appreciate the reviewer’s recognition of the clarity of the methods part.

    • Are the experiments adequately replicated and statistical analysis adequate?

    There is no statistical analysis to evaluate differences between samples in Figures 3 and 4. These must be included.

    We now added statistical analysis in Fig 5B and 6A (old figure 3 and 4).

    Minor comments:

    • Specific experimental issues that are easily addressable.

    Please see Major Comments above. We believe that the recommended experiments are not difficult to execute since reagents exist and experimental systems are already set up.

    • Are prior studies referenced appropriately?

    Authors reference 13 and 14 for the following sentence in Results section 2: "Deletion or mutation of LAT impairs formation of T cell microclusters". However, in Reference 14 Barda-Saad et al., actually show that pZAP clusters are intact in JCam2.5 cells lacking LAT. Perhaps authors should clarify that LAT (and downstream signaling molecule) microclusters are impaired when LAT is deleted or mutated.

    As the reviewer suggested, we now clarified that clustering of LAT downstream binding partners is impaired when citing reference (Barda-Saad et al).

    • Are the text and figures clear and accurate?

    Yes. But would be helpful if authors specify what "control" is in Fig. 3B and C. In Figure 3B it is lipid bilayers without CD19, while in 3C it is K562 cells that do not express CD19.

    We now specified “control” in the figure.

    • Do you have suggestions that would help the authors improve the presentation of their data and conclusions?

    Would be helpful if authors specify in every Figure or at least Figure legend the experimental bilayer system/ligand used, since they use both OKT3 and CD19 as ligands in the paper.

    We now specified the ligand in the figure or legend.

    Reviewer #2 (Significance):

    • Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field.

    If CAR microclusters and synapses are appropriately compared in a side by side comparison with TCR microclusters and synapses (as described in comments above), this study will be a conceptual advance in the field of CAR signaling. CAR microclusters have not been studied previously.

    • Place the work in the context of the existing literature (provide references, where appropriate).

    Very little imaging has been done on CAR synapses and to our knowledge this is the first live cell imaging study describing CAR microclusters.

    We appreciate this reviewer’s comment on our work as a conceptual advance in understanding CAR signaling.

    • State what audience might be interested in and influenced by the reported findings.
      This study will have a broad audience. Both scientists that study basic T cell signaling as well as clinicians that use CAR Ts will be interested in this study.

    We appreciate this reviewer’s recognition of the broad audience of this manuscript.

    • Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.

    T cell signaling and imaging of proximal T cell signaling responses.

    Reviewer #3 (Evidence, reproducibility and clarity):

    This manuscript by Dong and colleagues characterizes the molecular requirements and consequences of engaging a third-generation chimeric antigen receptor (CAR) directed to CD19. Utilizing a biological system of JCaM2.5, a Jurkat T cell mutant with dramatically low levels of LAT, expressing a CAR directed to CD19 fused to the cytoplasmic tails of CD28, 4-1BB and CD3z that is activated by CD19/ICAM1 reconstituted lipid bilayers, the authors demonstrate LAT is not required for microcluster formation, immunologic synapse formation or recruitment of GADS and pSLP76 to the plasma membrane. In contrast, LAT was required for anti-CD3 mediated microcluster formation and pSLP76 recruitment to the plasma membrane. However, LAT does appear to contribute to efficient synapse formation, PIP2 hydrolysis and IL-2 secretion when CAR+ JCaM2.5 or primary T cells are presented with Raji B cells, respectively. These data provide intriguing insights into the molecular requirements for third-generation CAR-T cell functions.

    The authors have developed quite a nice system to understand the molecular contributions for CAR-T function. A few suggestions are provided here to further enhance the accuracy and significance of the findings:

    1. The authors can address whether the LAT-independent effects are due to the attributes of third generation CAR-Ts with inclusion of CD28 and 4-1BB cytoplasmic domains or whether these differences are intrinsic to all CAR-Ts (e.g., first and second generation CARs).

    This is an excellent point. We have included new data showing LAT-independent cluster formation of the 1st generation CAR in both Jurkat and primary T cells (new Fig 4 and EV5). Therefore, we favor the second possibility as pointed by the reviewer that LAT-independent effects are intrinsic to CAR architecture.

    1. Since a first-generation CAR-T forms non-conventional synapses (Davenport, et al., PNAS 2018), the authors should consider more detailed kinetic analysis to understand the formation and dissolution of the constituents of the synapse with their third generation CAR. This should include measurements of the duration of microcluster and synapse formation as well as further analysis of c- and p-SMAC constituents (e.g., LFA-1, TALIN, LCK and pSLP76) over time.

    We agree with the reviewer on a more detailed characterization of the CAR synapse. We measured the duration of the unstable CAR synapse and time from cell landing to the start of retrograde flow (new Fig 2C). We also determined the localization of CD45, a marker for d-SMAC (new Fig 2D). We found that the formation of dSMAC is also not common in CAR T synapse, strengthening our conclusion that CAR forms non-typical immunological synapse.

    1. The authors utilize two different activation platforms. While using CD19/ICAM1 reconstituted bilayers, CAR+ JCaM2.5 or CAR+ primary T cells demonstrate no differences compared to wildtype JCaM2.5 cells in the parameters studied. However, when using Raji B cells, the CAR+ JCaM2.5 cells or CAR+ primary T cells demonstrate a more intermediate phenotype with respect to cell conjugate formation (Figure 3C) and IL-2 production (Figure 4D). The authors should analyze whether the differences attributed to the different outcomes may be due to the stimulation mode. For example, is c-SMAC assembly and GADS or pSLP76 recruitment to the plasma membrane still LAT-independent when activated with Raji B cells?

    As the reviewer suggested, we examined c-SMAC assembly in Raji B cells conjugated with CAR T cells. We found that the majority of CAR do not form cSMAC (new Fig EV4), which is consistent with the result from the bilayer activation system. Since both Gads and SLP76 are cytosolic proteins, they keep largely in the cytosolic pool which obscures their recruitment and clustering on the plasma membrane when imaged by confocal microscopy at the cross-section of cell-cell synapse.

    1. The authors should consider whether CAR expression level affects their observations. For example, do lower levels of CAR expression make the system LAT-dependent? Further, what is the level of the CAR relative to endogenous TCR expression on their primary T cells.

    We agree with the reviewer that it is informative to determine if LAT-independent signaling is dose dependent. We tried to measure the CAR concentration relative to the endogenous TCR/CD3z. By western blot using two different antibodies against CD3z, we detected TCR/CD3z expression, but found no bands corresponding to CAR. We believe this reflects a low expression of CAR in our system, which is confirmed by FACS. The general low expression of CAR makes it challenging to sort an even lower CAR-expressing population. Therefore, we sought alternative ways to determine the dose-dependence; we titrated the CD19 concentrations on the bilayer. As shown in the new Figure EV1, CAR formed microclusters similarly in the wild-type versus LAT-deficient cells in a wide range of CD19 concentration. Therefore, we conclude that the LAT-independent cluster formation is robust at low antigen density as well.

    Minor comment:

    1. Since JCaM2.5 has differences when compared to the parental Jurkat E6.1 T cell line, the authors should utilize JCaM2.5 reconstituted with wildtype LAT as a comparator.
      Agreeing with this reviewer, we recognized that Jcam2.5 was generated by mutagenesis which may result in protein expression difference for genes besides Lat. As suggested by reviewer1, we used J.LAT, a genuine LAT knockout cell line that is generated by CRISPR-mediated gene targeting, to perform the clustering assay (new Fig EV2). Our results showed that, similar to Jcam2.5, CAR but not the TCR formed microclusters in J.LAT cells.

    Reviewer #3 (Significance):

    The mechanism(s) by which CAR-Ts function is of high significance from both scientific and clinical viewpoints. From a scientific viewpoint, it provides important basic mechanistic information of how T cells are being activated to kill tumor cells. By understanding the molecular requirements, additional generations of CARs can be designed to provide greater efficacy, overcome resistance and possibly less toxicity.

    This is an evolving field and little is known to date. Hence, this study could represent an insightful and important advance to the field.

    Audience is to both basic immunologist and cancer biologists.

    We appreciate this reviewer’s comments on the high significance of our work to the field of both basic immunology and clinical application.

    My expertise is in T cell signaling, T cell biology and immunotherapy.

  2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #3

    Evidence, reproducibility and clarity

    This manuscript by Dong and colleagues characterizes the molecular requirements and consequences of engaging a third-generation chimeric antigen receptor (CAR) directed to CD19. Utilizing a biological system of JCaM2.5, a Jurkat T cell mutant with dramatically low levels of LAT, expressing a CAR directed to CD19 fused to the cytoplasmic tails of CD28, 4-1BB and CD3 that is activated by CD19/ICAM1 reconstituted lipid bilayers, the authors demonstrate LAT is not required for microcluster formation, immunologic synapse formation or recruitment of GADS and pSLP76 to the plasma membrane. In contrast, LAT was required for anti-CD3 mediated microcluster formation and pSLP76 recruitment to the plasma membrane. However, LAT does appear to contribute to efficient synapse formation, PIP2 hydrolysis and IL-2 secretion when CAR+ JCaM2.5 or primary T cells are presented with Raji B cells, respectively. These data provide intriguing insights into the molecular requirements for third-generation CAR-T cell functions.

    The authors have developed quite a nice system to understand the molecular contributions for CAR-T function. A few suggestions are provided here to further enhance the accuracy and significance of the findings:

    1. The authors can address whether the LAT-independent effects are due to the attributes of third generation CAR-Ts with inclusion of CD28 and 4-1BB cytoplasmic domains or whether these differences are intrinsic to all CAR-Ts (e.g., first and second generation CARs).
    2. Since a first-generation CAR-T forms non-conventional synapses (Davenport, et al., PNAS 2018), the authors should consider more detailed kinetic analysis to understand the formation and dissolution of the constituents of the synapse with their third generation CAR. This should include measurements of the duration of microcluster and synapse formation as well as further analysis of c- and p-SMAC constituents (e.g., LFA-1, TALIN, LCK and pSLP76) over time.
    3. The authors utilize two different activation platforms. While using CD19/ICAM1 reconstituted bilayers, CAR+ JCaM2.5 or CAR+ primary T cells demonstrate no differences compared to wildtype JCaM2.5 cells in the parameters studied. However, when using Raji B cells, the CAR+ JCaM2.5 cells or CAR+ primary T cells demonstrate a more intermediate phenotype with respect to cell conjugate formation (Figure 3C) and IL-2 production (Figure 4D). The authors should analyze whether the differences attributed to the different outcomes may be due to the stimulation mode. For example, is c-SMAC assembly and GADS or pSLP76 recruitment to the plasma membrane still LAT-independent when activated with Raji B cells?
    4. The authors should consider whether CAR expression level affects their observations. For example, do lower levels of CAR expression make the system LAT-dependent? Further, what is the level of the CAR relative to endogenous TCR expression on their primary T cells.

    Minor comment:

    1. Since JCaM2.5 has differences when compared to the parental Jurkat E6.1 T cell line, the authors should utilize JCaM2.5 reconstituted with wildtype LAT as a comparator.

    Significance (Required)

    The mechanism(s) by which CAR-Ts function is of high significance from both scientific and clinical viewpoints. From a scientific viewpoint, it provides important basic mechanistic information of how T cells are being activated to kill tumor cells. By understanding the molecular requirements, additional generations of CARs can be designed to provide greater efficacy, overcome resistance and possibly less toxicity.

    This is an evolving field and little is known to date. Hence, this study could represent an insightful and important advance to the field.

    Audience is to both basic immunologist and cancer biologists.

    My expertise is in T cell signaling, T cell biology and immunotherapy.

  3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #2

    Evidence, reproducibility and clarity

    Summary:

    Provide a short summary of the findings and key conclusions (including methodology and model system(s) where appropriate).

    In this study, the authors have interrogated CAR signaling by imaging CD19-CAR microclusters as well as T cell signaling molecules recruited to CAR microclusters. They report differences spatial assembly between CAR and TCR microclusters that form on a lipid bilayer containing ligand. They also report that LAT is not required for CAR microcluster formation, recruitment of downstream signaling molecules or IL-2 production in Jurkat cells, while in primary T cells IL-2 production by CARs show more of a LAT dependence. From these observations, they conclude that CAR T cells have a rewired signaling pathway as compared to T cells that signal through the TCR.

    Major comments:

    Are the key conclusions convincing?

    The conclusions made by the authors about CAR microclusters are convincing. However, the conclusion that there is a "rewired signaling network" different from TCR microclusters needs to be more convincingly demonstrated in side-by-side comparisons of TCR and CAR microclusters and synapses.

    1. One of the key conclusions in this study is that CAR microclusters form in the absence of LAT, but TCR microclusters require LAT (in JCam2.5 cells in Fig. 2 and primary T cells in Fig. 4B). The requirement of LAT for formation of TCR microclusters is surprising, given multiple reports (one of which the authors have cited) that TCR and ZAP70 clusters form normally in the absence of LAT (pZAP microclusters form normally in JCam2.5 cells Barda-Saad Nature Immunology 2005 Figure 1; TCR clusters form normally in LAT CRISPR KO Jurkat cells Yi et al., Nature Communications, 2019 Figure 5). The authors should carefully evaluate TCR and ZAP70 clusters (that form upstream of LAT) in their assays.
    2. The authors make major conclusions about LAT dependence and independence of TCR and CAR microclusters respectively, by using JCam2.5 Jurkat cells and CRISPR/Cas9 edited primary cells. Of relevance to this conclusion, differences in the phosphorylation status of ZAP70 and SLP76 have been described between JCam2.5 cells lacking LAT (in which LAT was found to be deleted by gamma radiation) and J.LAT cells (in which LAT was specifically deleted by CRISPR/Cas9 in Lo et al Nature Immunology 2018). Of importance, pZAP and pSLP76 appeared fairly intact in J.LAT cells, but absent in JCam2.5 cells (Lo et al., Nat Immunol. 2018, Supp Fig 2). Therefore, the authors should evaluate TCR, ZAP70, Gads and SLP76 in TCR and CAR microclusters in J.LAT cells. This may partly explain the discrepancy in LAT requirement for IL-2 production in JCam2.5 cells and primary cells with LAT CRISPRed out.
    3. Since the authors are reporting differences between CAR synapses and TCR synapses, the authors should show side by side comparison of CAR and TCR synapses in Figure 1F.
    4. The authors should evaluate Gads microcluster formation in response to TCR stimulation via OKT3 (in Figure 4A). Given that it has been reported that TCR, Grb2 and c-Cbl are recruited to microclusters in Jurkat cells lacking LAT by CRISPR deletion (Yi et al., Nature Communications, 2019), it is important to establish the differences between TCR microclusters and CAR microclusters in side by side comparisons in their assay system.
    5. Similar to the comment about Gads above, the authors should evaluate pSLP76 microcluster formation in response to TCR stimulation via OKT3 in primary T cells lacking LAT in Figure 4C, i.e. side by side comparisons of pSLP76 in TCR and CAR synapses (with and without LAT) should be shown.

    Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether?

    1. The data shown in Figure 3C shows a reduction in conjugate formation from 80% (WT) to 30% (LAT -). This is a severe reduction and does not support the authors' claim in the corresponding Figure legend that "LAT is dispensable for cell conjugate formation between Jurkat T cells expressing CAR and Raji B cells" and the Abstract that "LAT.....is not required for....immunological synapse formation". Statistical analysis for variance should be shown here.
    2. In a similar vein, based on data from Movie S5 (where in a single cell, CAR microclusters translocate from cell periphery to center), and Figure 3C where (as described above in point 1) conjugate formation appears to be severely reduced, the authors conclude in the Results and Abstract that "LAT....is not required for actin remodeling following CAR activation". This conclusion is not supported by the data and the authors should remove this claim. Alternatively, actin polymerization in CAR expressing cells (that are LAT sufficient and deficient) can be easily evaluated using phalloidin or F-Tractin.

    Would additional experiments be essential to support the claims of the paper?
    Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.

    Yes. Please see major comments above.

    Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments.

    Yes. It should take 3 months to complete these experiments, since reagents and experimental systems to do these experiments already exist.

    Are the data and the methods presented in such a way that they can be reproduced?

    Yes. Methods are clearly explained.

    Are the experiments adequately replicated and statistical analysis adequate?

    There is no statistical analysis to evaluate differences between samples in Figures 3 and 4. These must be included.

    Minor comments:

    Specific experimental issues that are easily addressable.

    Please see Major Comments above. We believe that the recommended experiments are not difficult to execute since reagents exist and experimental systems are already set up.

    Are prior studies referenced appropriately?

    Authors reference 13 and 14 for the following sentence in Results section 2: "Deletion or mutation of LAT impairs formation of T cell microclusters". However, in Reference 14 Barda-Saad et al., actually show that pZAP clusters are intact in JCam2.5 cells lacking LAT. Perhaps authors should clarify that LAT (and downstream signaling molecule) microclusters are impaired when LAT is deleted or mutated.

    Are the text and figures clear and accurate?

    Yes. But would be helpful if authors specify what "control" is in Fig. 3B and C. In Figure 3B it is lipid bilayers without CD19, while in 3C it is K562 cells that do not express CD19.

    Do you have suggestions that would help the authors improve the presentation of their data and conclusions?
    Would be helpful if authors specify in every Figure or at least Figure legend the experimental bilayer system/ligand used, since they use both OKT3 and CD19 as ligands in the paper.

    Significance (Required)

    Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field.

    If CAR microclusters and synapses are appropriately compared in a side by side comparison with TCR microclusters and synapses (as described in comments above), this study will be a conceptual advance in the field of CAR signaling. CAR microclusters have not been studied previously.

    Place the work in the context of the existing literature (provide references, where appropriate).

    Very little imaging has been done on CAR synapses and to our knowledge this is the first live cell imaging study describing CAR microclusters.

    State what audience might be interested in and influenced by the reported findings.

    This study will have a broad audience. Both scientists that study basic T cell signaling as well as clinicians that use CAR Ts will be interested in this study.

    Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.

    T cell signaling and imaging of proximal T cell signaling responses.

  4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #1

    Evidence, reproducibility and clarity

    The authors compare the TCR alone to a CAR that contains signaling modules from three receptors- TCR, CD28 and 41BB. The data quality if good and the experiments done are. The difference is quite clear, and I would even like to see a little more of the evidence related to failure of the TCR system.

    More specifically:

    Su and colleagues show that a third generation CAR with TCR zeta, CD28 and 41BB signal transduction pathways can activate a T cell for microcluster formation and Gads/SLP-76 recruitment, but not IL-2 production, without LAT. This is surprising because LAT is generally considered, as is up held here, as an essential adapter protein for T cell activation. However, this is not a "fair" experiment as the CAR has sequences from TCR, and two co-stimulatory receptor- CD28 and 41BB. It would be important and very straight-forward to test first and second generation CARs to determine if LAT independence is a function of the CAR architecture itself, or the additional costimulatory sequences. If it turns out that a first generation CAR with only TCR sequences can trigger LAT independent clustering and SLP-76 recruitment then the comparison would be fair and no additional experiment would be needed to make the point that the CAR architecture is intrinsically LAT independent. If the CD28 and/or 41BB sequences are needed for LAT independence then the fair comparison would be to co-crosslink TCR, CD28 and 41BB (an inducible costimulator such that anti-CD27 might be substituted to have a constitutively expressed receptor with this similar motifs) should be cross-linked with the TCR to make this a fair comparison between the two architectures.

    The authors may want to cite work from Vignali and colleagues that even the TCR has two signaling modules- the classical ZAP-70/LAT module that is responsible to IL-2 and a Vav/Notch dependent module that controls proliferation. Its not clear to me that the issue raised about distinct signaling by CARs is completely parallel to this, but its interesting that Vignali also associated the classical TCR signaling pathway as responsible for IL-2 with an alterive pathways that uses the same ITAMs to control distinct functions. See Guy CS, Vignali KM, Temirov J, Bettini ML, Overacre AE, Smeltzer M, Zhang H, Huppa JB, Tsai YH, Lobry C, Xie J, Dempsey PJ, Crawford HC, Aifantis I, Davis MM, Vignali DA. Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nat Immunol. 2013;14(3):262-70.

    I would be very interested to see a movie of the LAT deficient T cells interacting with the anti-CD3 coated bilayers in Figure 2A. Since OKT3 has a high affinity for CD3 and is coated on the suface at a density that should engage anti-CD3 I'm surprised there is no clustering even simply based on mass action. The result looks almost like a dominant negative effect of LAT deficiency on a high affinity extracellular interaction. It would be interesting to see how this interface evolves or if there is anti-adhesive behavior that emerges.

    Significance

    While it interesting that the CAR is LAT independent, its obvious that the signalling networks are different as the CAR has two sets of motifs that are absent in the TCR, so the experiments as presented are not that insightful about the specific nature of the differences that lead to the different outcomes. At present its not a particularly well controlled experiment as the third gen CAR is changing too many things in relation to the TCR for the experiment to be interpreted. It would be easy to address this is a revised manuscript. To publish as is the discussion would need to acknowledge these limitations. The work is preliminary as science, but it might be useful to T cell engineering field to have this information as a preliminary report, which might be an argument for adding discussion of limitations, but going forward without more detailed analysis of mechanism.