The impact of school reopening on the spread of COVID-19 in England

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

By mid-May 2020, cases of COVID-19 in the UK had been declining for over a month; a multi-phase emergence from lockdown was planned, including a scheduled partial reopening of schools on 1 June 2020. Although evidence suggests that children generally display mild symptoms, the size of the school-age population means the total impact of reopening schools is unclear. Here, we present work from mid-May 2020 that focused on the imminent opening of schools and consider what these results imply for future policy. We compared eight strategies for reopening primary and secondary schools in England. Modifying a transmission model fitted to UK SARS-CoV-2 data, we assessed how reopening schools affects contact patterns, anticipated secondary infections and the relative change in the reproduction number, R . We determined the associated public health impact and its sensitivity to changes in social distancing within the wider community. We predicted that reopening schools with half-sized classes or focused on younger children was unlikely to push R above one. Older children generally have more social contacts, so reopening secondary schools results in more cases than reopening primary schools, while reopening both could have pushed R above one in some regions. Reductions in community social distancing were found to outweigh and exacerbate any impacts of reopening. In particular, opening schools when the reproduction number R is already above one generates the largest increase in cases. Our work indicates that while any school reopening will result in increased mixing and infection amongst children and the wider population, reopening schools alone in June 2020 was unlikely to push R above one. Ultimately, reopening decisions are a difficult trade-off between epidemiological consequences and the emotional, educational and developmental needs of children. Into the future, there are difficult questions about what controls can be instigated such that schools can remain open if cases increase.

This article is part of the theme issue ‘Modelling that shaped the early COVID-19 pandemic response in the UK’.

Article activity feed

  1. SciScore for 10.1101/2020.06.04.20121434: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    To consider the effects of specific school years returning, this work made some simplifying assumptions, and our results therefore have limitations. In particular, in this paper we consider only an England-specific context. The devolved administrations employ a different school system from England, including different school term dates, which may affect the outcome of reopening schools. Future work could incorporate such differences, some of the epidemic variability between nations will be captured by the model parameter fits that are already performed for all the devolved nations. In our analysis of schools we have made the pessimistic assumption that there will be limited non-pharmaceutical intervention within the school setting, however, we have ignored the potentially greater mixing of parents or other adults when taking younger children to school. Also, the model is deterministic, and captures the return to school in terms of increased mixing between school ages; it cannot capture the inevitable heterogeneity between schools, with some schools experiencing many cases while others have none. Similarly, we make no attempt to replicate the reactive closure of classes to prevent further spread once cases are identified. As we have shown, the context in which school reopening happens will also have an impact on its effect. While we consider different population level mixing patterns, this exploration is necessarily constrained; for example it may also be the case that the ope...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.