Modelling COVID-19 outbreaks in USA with distinct testing, lockdown speed and fatigue rates

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Each state in the USA exhibited a unique response to the COVID-19 outbreak, along with variable levels of testing, leading to different actual case burdens in the country. In this study, via per capita testing dependent ascertainment rates, along with case and death data, we fit a minimal epidemic model for each state. We estimate infection-level responsive lockdown/self-quarantine entry and exit rates (representing government and behavioural reaction), along with the true number of cases as of 31 May 2020. Ultimately, we provide error-corrected estimates for commonly used metrics such as infection fatality ratio and overall case ascertainment for all 55 states and territories considered, along with the USA in aggregate, in order to correlate outbreak severity with first wave intervention attributes and suggest potential management strategies for future outbreaks. We observe a theoretically predicted inverse proportionality relation between outbreak size and lockdown rate, with scale dependent on the underlying reproduction number and simulations suggesting a critical population quarantine ‘half-life’ of 30 days independent of other model parameters.

Article activity feed

  1. SciScore for 10.1101/2021.01.04.21249231: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on page 10. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.