Communicating personalized risks from COVID-19: guidelines from an empirical study

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

As increasing amounts of data accumulate on the effects of the novel coronavirus SARS-CoV-2 and the risk factors that lead to poor outcomes, it is possible to produce personalized estimates of the risks faced by groups of people with different characteristics. The challenge of how to communicate these then becomes apparent. Based on empirical work (total n = 5520, UK) supported by in-person interviews with the public and physicians, we make recommendations on the presentation of such information. These include: using predominantly percentages when communicating the absolute risk, but also providing, for balance, a format which conveys a contrasting (higher) perception of risk (expected frequency out of 10 000); using a visual linear scale cut at an appropriate point to illustrate the maximum risk, explained through an illustrative ‘persona’ who might face that highest level of risk; and providing context to the absolute risk through presenting a range of other ‘personas’ illustrating people who would face risks of a wide range of different levels. These ‘personas’ should have their major risk factors (age, existing health conditions) described. By contrast, giving people absolute likelihoods of other risks they face in an attempt to add context was considered less helpful. We note that observed effect sizes generally were small. However, even small effects are meaningful and relevant when scaled up to population levels.

Article activity feed

  1. SciScore for 10.1101/2020.10.05.20206961: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.