Healthy human induced pluripotent stem cell-derived cardiomyocytes exhibit sex dimorphism even without the addition of hormones
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a valuable cell type for studying human cardiac health and disease in vitro. However, it is not known whether hiPSC-CMs display sex dimorphism and therefore whether sex should be incorporated as a biological variable in in vitro studies that include this cell type. To date, the vast majority of studies that utilize hiPSC-CMs do not include both male and female sex nor stratify results based on sex because it is challenging to amass such a cohort of cells. Here, we generated 3 female and 3 male hiPSC lines from adult left ventricular cardiac fibroblasts as a resource for studying sex differences in in vitro cardiac models. We used this resource to generate hiPSC-CMs and maintained them in basal media without exogenous hormones. Functional assessment of CMs showed enhanced calcium handling in female-derived hiPSC-CMs relative to male. Bulk RNA sequencing revealed over 300 differentially expressed genes (DEGs) between male and female hiPSC-CMs. Gene ontology analysis of DEGs showed distinct differences in pathways related to cardiac pathology including cell-cell adhesion, metabolic processes, and response to ischemic stress. Differential expression of the sodium channel auxiliary unit SCN3B was found and validated through patch-clamp measurements of sodium currents, showing increased peak amplitude and window current in female hiPSC-CMs. These findings highlight the importance of considering sex as a variable when conducting studies to evaluate aspects of human cardiac health and disease related to CM function.