Reliably Assessing Duration of Protection for Coronavirus Disease 2019 Vaccines

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Decision making about vaccination and boosting schedules for coronavirus disease 2019 (COVID-19) hinges on reliable methods for evaluating the longevity of vaccine protection. We show that modeling of protection as a piecewise linear function of time since vaccination for the log hazard ratio of the vaccine effect provides more reliable estimates of vaccine effectiveness at the end of an observation period and also detects plateaus in protective effectiveness more reliably than the standard method of estimating a constant vaccine effect over each time period. This approach will be useful for analyzing data pertaining to COVID-19 vaccines and other vaccines for which rapid and reliable understanding of vaccine effectiveness over time is desired.

Article activity feed

  1. SciScore for 10.1101/2021.12.22.21268201: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.