Structural remodeling of SARS-CoV-2 spike protein glycans reveals the regulatory roles in receptor-binding affinity

This article has been Reviewed by the following groups

Read the full article

Abstract

Glycans of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein are speculated to play functional roles in the infection processes as they extensively cover the protein surface and are highly conserved across the variants. The spike protein has been the principal target for vaccine and therapeutic development while the exact effects of its glycosylation remain elusive. Analytical reports have described the glycan heterogeneity of the spike protein. Subsequent molecular simulation studies provided a knowledge basis of the glycan functions. However, experimental data on the role of discrete glycoforms on the spike protein pathobiology remains scarce. Building an understanding of their roles in SARS-CoV-2 is important as we continue to develop effective medicines and vaccines to combat the disease. Herein, we used designed combinations of glycoengineering enzymes to simplify and control the glycosylation profile of the spike protein receptor-binding domain (RBD). Measurements of the receptor-binding affinity revealed opposite regulatory effects of the RBD glycans with and without sialylation, which presents a potential strategy for modulating the spike protein behaviors through glycoengineering. Moreover, we found that the reported anti-SARS-CoV-(2) antibody, S309, neutralizes the impact of different RBD glycoforms on the receptor-binding affinity. In combination with molecular dynamics simulation, this work reports the regulatory roles that glycosylation plays in the interaction between the viral spike protein and host receptor, providing new insights into the nature of SARS-CoV-2. Beyond this study, enzymatic glycan remodeling offers the opportunity to understand the fundamental role of specific glycoforms on glycoconjugates across molecular biology.

Article activity feed

  1. SciScore for 10.1101/2021.08.26.457782: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.