Dynamic changes in gene expression through aging in Drosophila melanogaster heads
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Work in many systems has shown large-scale changes in gene expression during aging. However, many studies employ just 2 arbitrarily chosen timepoints to measure expression and can only observe an increase or a decrease in expression between “young” and “old” animals, failing to capture any dynamic, nonlinear changes that occur throughout the aging process. We used RNA sequencing to measure expression in male head tissue at 15 timepoints through the lifespan of an inbred Drosophila melanogaster strain. We detected >6,000 significant, age-related genes, nearly all of which have been seen in previous Drosophila aging expression studies and that include several known to harbor lifespan-altering mutations. We grouped our gene set into 28 clusters via their temporal expression change, observing a diversity of trajectories; some clusters show a linear change over time, while others show more complex, nonlinear patterns. Notably, reanalysis of our dataset comparing the earliest and latest timepoints—mimicking a 2-timepoint design—revealed fewer differentially expressed genes (around 4,500). Additionally, those genes exhibiting complex expression trajectories in our multitimepoint analysis were most impacted in this reanalysis; their identification, and the inferred change in gene expression with age, was often dependent on the timepoints chosen. Informed by our trajectory-based clusters, we executed a series of gene enrichment analyses, identifying enriched functions/pathways in all clusters, including the commonly seen increase in stress- and immune-related gene expression with age. Finally, we developed a pair of accessible Shiny apps to enable exploration of our differential expression and gene enrichment results.