Refining Reproduction Number Estimates to Account for Unobserved Generations of Infection in Emerging Epidemics

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Background

Estimating the transmissibility of infectious diseases is key to inform situational awareness and for response planning. Several methods tend to overestimate the basic (R0) and effective (Rt) reproduction numbers during the initial phases of an epidemic. In this work we explore the impact of incomplete observations and underreporting of the first generations of infections during the initial epidemic phase.

Methods

We propose a debiasing procedure that utilizes a linear exponential growth model to infer unobserved initial generations of infections and apply it to EpiEstim. We assess the performance of our adjustment using simulated data, considering different levels of transmissibility and reporting rates. We also apply the proposed correction to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) incidence data reported in Italy, Sweden, the United Kingdom, and the United States.

Results

In all simulation scenarios, our adjustment outperforms the original EpiEstim method. The proposed correction reduces the systematic bias, and the quantification of uncertainty is more precise, as better coverage of the true R0 values is achieved with tighter credible intervals. When applied to real-world data, the proposed adjustment produces basic reproduction number estimates that closely match the estimates obtained in other studies while making use of a minimal amount of data.

Conclusions

The proposed adjustment refines the reproduction number estimates obtained with the current EpiEstim implementation by producing improved, more precise estimates earlier than with the original method. This has relevant public health implications.

Article activity feed

  1. SciScore for 10.1101/2021.11.08.21266033: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.