Refining Reproduction Number Estimates to Account for Unobserved Generations of Infection in Emerging Epidemics
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Background
Estimating the transmissibility of infectious diseases is key to inform situational awareness and for response planning. Several methods tend to overestimate the basic (R0) and effective (Rt) reproduction numbers during the initial phases of an epidemic. In this work we explore the impact of incomplete observations and underreporting of the first generations of infections during the initial epidemic phase.
Methods
We propose a debiasing procedure that utilizes a linear exponential growth model to infer unobserved initial generations of infections and apply it to EpiEstim. We assess the performance of our adjustment using simulated data, considering different levels of transmissibility and reporting rates. We also apply the proposed correction to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) incidence data reported in Italy, Sweden, the United Kingdom, and the United States.
Results
In all simulation scenarios, our adjustment outperforms the original EpiEstim method. The proposed correction reduces the systematic bias, and the quantification of uncertainty is more precise, as better coverage of the true R0 values is achieved with tighter credible intervals. When applied to real-world data, the proposed adjustment produces basic reproduction number estimates that closely match the estimates obtained in other studies while making use of a minimal amount of data.
Conclusions
The proposed adjustment refines the reproduction number estimates obtained with the current EpiEstim implementation by producing improved, more precise estimates earlier than with the original method. This has relevant public health implications.
Article activity feed
-
-
SciScore for 10.1101/2021.11.08.21266033: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this …
SciScore for 10.1101/2021.11.08.21266033: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-