Improved prediction of new COVID-19 cases using a simple vector autoregressive model: evidence from seven New York state counties

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

With the rapid spread of COVID-19, there is an urgent need for a framework to accurately predict COVID-19 transmission. Recent epidemiological studies have found that a prominent feature of COVID-19 is its ability to be transmitted before symptoms occur, which is generally not the case for seasonal influenza and severe acute respiratory syndrome. Several COVID-19 predictive epidemiological models have been proposed; however, they share a common drawback – they are unable to capture the unique asymptomatic nature of COVID-19 transmission. Here, we propose vector autoregression (VAR) as an epidemiological county-level prediction model that captures this unique aspect of COVID-19 transmission by introducing newly infected cases in other counties as lagged explanatory variables. Using the number of new COVID-19 cases in seven New York State counties, we predicted new COVID-19 cases in the counties over the next 4 weeks. We then compared our prediction results with those of 11 other state-of-the-art prediction models proposed by leading research institutes and academic groups. The results showed that VAR prediction is superior to other epidemiological prediction models in terms of the root mean square error of prediction. Thus, we strongly recommend the simple VAR model as a framework to accurately predict COVID-19 transmission.

Article activity feed

  1. SciScore for 10.1101/2022.01.14.22269324: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.