This is GlycoQL

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Motivation

We have previously designed and implemented a tree-based ontology to represent glycan structures with the aim of searching these structures with a glyco-driven syntax. This resulted in creating the GlySTreeM knowledge-base as a linchpin of the structural matching procedure and we now introduce a query language, called GlycoQL, for the actual implementation of a glycan structure search.

Results

The methodology is described and illustrated with a use-case focused on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike protein glycosylation. We show how to enhance site annotation with federated queries involving UniProt and GlyConnect, our glycoprotein database.

Availability and implementation

https://glyconnect.expasy.org/glycoql/.

Article activity feed

  1. SciScore for 10.1101/2022.04.14.488348: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Experimental Models: Cell Lines
    SentencesResources
    These structures are reported for a number of glycosylation sites across experimentally different recombinant versions of the protein, using three expression systems, namely, HEK293 (human embryonic kidney), BTI-Tn-5B1-4 (insect cell) and CHO (Chinese Hamster Ovary).
    HEK293
    suggested: None
    Software and Algorithms
    SentencesResources
    The parsing algorithm incorporating the semantic choices proper to GlycoQL is implemented as a Python module based on RdfLib (Krech (2006)).
    Python
    suggested: (IPython, RRID:SCR_001658)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.