ReadItAndKeep: rapid decontamination of SARS-CoV-2 sequencing reads

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Summary

Viral sequence data from clinical samples frequently contain contaminating human reads, which must be removed prior to sharing for legal and ethical reasons. To enable host read removal for SARS-CoV-2 sequencing data on low-specification laptops, we developed ReadItAndKeep, a fast lightweight tool for Illumina and nanopore data that only keeps reads matching the SARS-CoV-2 genome. Peak RAM usage is typically below 10 MB, and runtime less than 1 min. We show that by excluding the polyA tail from the viral reference, ReadItAndKeep prevents bleed-through of human reads, whereas mapping to the human genome lets some reads escape. We believe our test approach (including all possible reads from the human genome, human samples from each of the 26 populations in the 1000 genomes data and a diverse set of SARS-CoV-2 genomes) will also be useful for others.

Availability and implementation

ReadItAndKeep is implemented in C++, released under the MIT license, and available from https://github.com/GenomePathogenAnalysisService/read-it-and-keep.

Supplementary information

Supplementary data are available at Bioinformatics online.

Article activity feed

  1. SciScore for 10.1101/2022.01.21.477194: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.