Quantitative Fit Evaluation of N95 Filtering Facepiece Respirators and Coronavirus Inactivation Following Heat Treatment

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Reuse of filtering facepiece respirators (FFRs, commonly referred to as N95s) normally meant for single use has become common in healthcare facilities due to shortages caused by the COVID-19 pandemic. Here, we report that murine hepatitis coronavirus initially seeded on FFR filter material is inactivated (6 order of magnitude reduction as measured by median tissue culture infective dose, TCID50) after dry heating at 75°C for 30 min. We also find that the quantitative fit of FFRs after heat treatment at this temperature, under dry conditions or at 90% relative humidity, is not affected by single or 10 heating cycles. Previous studies have reported that the filtration efficiency of FFRs is not negatively impacted by these heating conditions. These results suggest that thermal inactivation of coronaviruses is a potentially rapid and widely deployable method to reuse N95 FFRs in emergency situations where reusing FFRs is a necessity and broad-spectrum sterilization is unavailable. However, we also observe that a radiative heat source (e.g. an exposed heating element) results in rapid qualitative degradation of the FFR. Finally, we discuss differences in the results reported here and other recent studies investigating heat as a means to recycle FFRs. These differences suggest that while our repeated decontamination cycles do not affect FFR fit, overall wear time and the number of donning/doffing cycles are important factors that likely degrade FFR fit and must be investigated further.

Article activity feed

  1. SciScore for 10.1101/2020.04.15.20065755: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.