Impact of the Timing of Stay-at-Home Orders and Mobility Reductions on First-Wave COVID-19 Deaths in US Counties

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission continues to evolve, understanding the contribution of location-specific variations in nonpharmaceutical interventions and behaviors to disease transmission during the initial epidemic wave will be key for future control strategies. We offer a rigorous statistical analysis of the relative effectiveness of the timing of both official stay-at-home orders and population mobility reductions during the initial stage of the US coronavirus disease 2019 (COVID-19) epidemic. We used a Bayesian hierarchical regression to fit county-level mortality data from the first case on January 21, 2020, through April 20, 2020, and quantify associations between the timing of stay-at-home orders and population mobility with epidemic control. We found that among 882 counties with an early local epidemic, a 10-day delay in the enactment of stay-at-home orders would have been associated with 14,700 additional deaths by April 20 (95% credible interval: 9,100, 21,500), whereas shifting orders 10 days earlier would have been associated with nearly 15,700 fewer lives lost (95% credible interval: 11,350, 18,950). Analogous estimates are available for reductions in mobility—which typically occurred before stay-at-home orders—and are also stratified by county urbanicity, showing significant heterogeneity. Results underscore the importance of timely policy and behavioral action for early-stage epidemic control.

Article activity feed

  1. SciScore for 10.1101/2020.11.24.20238055: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    The limitations of this analysis notwithstanding, we move a step closer into parsing these events by providing evidence for the timing of mobility-related behavior changes as an important determinant of local daily COVID-19 deaths. These results point towards the need to investigate how official reopening policies and other policies that varied across counties interplay with changes in mobility beyond the time frame considered here and into the later phases of the US COVID-19 epidemic.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.