Heterogeneity and superspreading effect on herd immunity
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
We model and calculate the fraction of infected population necessary to reach herd immunity, taking into account the heterogeneity in infectiousness and susceptibility, as well as the correlation between those two parameters. We show that these cause the effective reproduction number to decrease more rapidly, and consequently have a drastic effect on the estimate of the necessary percentage of the population that has to contract the disease for herd immunity to be reached. We quantify the difference between the size of the infected population when the effective reproduction number decreases below 1 vs the ultimate fraction of population that had contracted the disease. This sheds light on an important distinction between herd immunity and the end of the disease and highlights the importance of limiting the spread of the disease even if we plan to naturally reach herd immunity. We analyze the effect of various lock-down scenarios on the resulting final fraction of infected population. We discuss implications to COVID-19 and other pandemics and compare our theoretical results to population-based simulations. We consider the dependence of the disease spread on the architecture of the infectiousness graph and analyze different graph architectures and the limitations of the graph models.
Article activity feed
-
SciScore for 10.1101/2020.09.06.20189290: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar …
SciScore for 10.1101/2020.09.06.20189290: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
-