The dynamics of SARS-CoV-2 infectivity with changes in aerosol microenvironment

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Understanding the factors that influence the airborne survival of viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in aerosols is important for identifying routes of transmission and the value of various mitigation strategies for preventing transmission. We present measurements of the stability of SARS-CoV-2 in aerosol droplets (∼5 to 10 µm equilibrated radius) over timescales spanning 5 s to 20 min using an instrument to probe survival in a small population of droplets (typically 5 to 10) containing ∼1 virus/droplet. Measurements of airborne infectivity change are coupled with a detailed physicochemical analysis of the airborne droplets containing the virus. A decrease in infectivity to ∼10% of the starting value was observable for SARS-CoV-2 over 20 min, with a large proportion of the loss occurring within the first 5 min after aerosolization. The initial rate of infectivity loss was found to correlate with physical transformation of the equilibrating droplet; salts within the droplets crystallize at relative humidities (RHs) below 50%, leading to a near-instant loss of infectivity in 50 to 60% of the virus. However, at 90% RH, the droplet remains homogenous and aqueous, and the viral stability is sustained for the first 2 min, beyond which it decays to only 10% remaining infectious after 10 min. The loss of infectivity at high RH is consistent with an elevation in the pH of the droplets, caused by volatilization of CO 2 from bicarbonate buffer within the droplet. Four different variants of SARS-CoV-2 were compared and found to have a similar degree of airborne stability at both high and low RH.

Article activity feed

  1. SciScore for 10.1101/2022.01.08.22268944: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Cell Line Authenticationnot detected.

    Table 2: Resources

    Experimental Models: Cell Lines
    SentencesResources
    Virus Strains and Culture Methods: Vero E6 cells modified to constitutively express TMPRSS2 (Vero E6/TMPRSS2 cells (72); obtained from NIBSC, UK) were cultured at 37°C and 5% CO2 in Dulbecco’s Modified Eagle Medium (DMEM, high glucose; Sigma, UK) supplemented with 10% foetal bovine serum (FBS, Sigma), 100 units/ml penicillin (Gibco, UK), 100 µg/ml streptomycin (Gibco, UK), and L-glutamine (Gibco, UK).
    Vero E6
    suggested: None
    Stocks of SARS-CoV-2 isolates were produced by inoculation of Vero E6/TMPRSS2 cells at a multiplicity of infection (MOI) of 0.01 and incubating the cells for 48- 72 h in Eagle’s minimum essential medium plus GlutaMAX (MEM, Gibco, ThermoFisher, cat# 41090036) supplemented with 2% v/v FBS and 0.1 mM non-essential amino acids (MEM 2% FBS).
    Vero E6/TMPRSS2
    suggested: None

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a protocol registration statement.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.