Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The SARS-CoV-2 virus infects cells by docking the spike protein at its surface to a receptor protein exposed on human cells. Both receptor and spike are covered by sugars. With molecular dynamics simulations, we show that sugars attached to the N90 site of the human receptor interfere with binding to the virus, explaining reports of increased susceptibility to infection if N90 glycosylation is lost. By contrast, sugars at the human receptor N322 site strengthen the binding to spike by latching onto a site on spike that is targeted also by neutralizing antibodies. By characterizing the contrasting roles of sugars in the interaction between virus and host cells, we aid in the targeted development of neutralizing antibodies and SARS-CoV-2 fusion inhibitors.

Article activity feed

  1. SciScore for 10.1101/2020.07.09.193680: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    System setup: The interaction of the ACE2 receptor with the RBD of the spike protein was studied with all-atom explicit solvent MD simulation using GROMACS v2019.6 (23).
    GROMACS
    suggested: (GROMACS, RRID:SCR_014565)
    Analysis: Sequence alignment: The sequences of the ACE2 receptor from various species and also the different coronaviruses were aligned using T-COFFEE program (33).
    T-COFFEE
    suggested: (T-Coffee, RRID:SCR_011818)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.