Event-specific interventions to minimize COVID-19 transmission

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

We provide a simple model of COVID-19 transmission at workplaces, events, and other settings. We use data from reported single-event, short-duration outbreaks to estimate the transmission rate, number of contacts, and turnover at events. We use these to predict how many new infections are expected to occur at various events given the presence of a single infectious individual. We then determine which types of interventions will be the most effective in reducing the number of infections: reducing transmission rates (such as with masks), social distancing (reducing the number of people in contact), or bubbling (keeping contact groups small and consistent).

Article activity feed

  1. SciScore for 10.1101/2020.07.09.20149435: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a protocol registration statement.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

  2. SciScore for 10.1101/2020.07.09.20149435: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    We fixed the transmission range to two metres, and sought to estimate k for various events using images of similar events obtained via Google image search.
    Google image
    suggested: None

    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore is not a substitute for expert review. SciScore checks for the presence and correctness of RRIDs (research resource identifiers) in the manuscript, and detects sentences that appear to be missing RRIDs. SciScore also checks to make sure that rigor criteria are addressed by authors. It does this by detecting sentences that discuss criteria such as blinding or power analysis. SciScore does not guarantee that the rigor criteria that it detects are appropriate for the particular study. Instead it assists authors, editors, and reviewers by drawing attention to sections of the manuscript that contain or should contain various rigor criteria and key resources. For details on the results shown here, including references cited, please follow this link.