Analysis of overdispersion in airborne transmission of COVID-19

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Superspreading events and overdispersion are hallmarks of the COVID-19 pandemic. However, the specific roles and influence of established viral and physical factors related to the mechanisms of transmission, on overdispersion, remain unresolved. We, therefore, conducted mechanistic modeling of SARS-CoV-2 point-source transmission by infectious aerosols using real-world occupancy data from more than 100 000 social contact settings in ten US metropolises. We found that 80% of secondary infections are predicted to arise from approximately 4% of index cases, which show up as a stretched tail in the probability density function of secondary infections per infectious case. Individual-level variability in viral load emerges as the dominant driver of overdispersion, followed by occupancy. We then derived an analytical function, which replicates the simulated overdispersion, and with which we demonstrate the effectiveness of potential mitigation strategies. Our analysis, connecting the mechanistic understanding of SARS-CoV-2 transmission by aerosols with observed large-scale epidemiological characteristics of COVID-19 outbreaks, adds an important dimension to the mounting body of evidence with regard to airborne transmission of SARS-CoV-2 and thereby emerges as a powerful tool toward assessing the probability of outbreaks and the potential impact of mitigation strategies on large scale disease dynamics.

Article activity feed

  1. SciScore for 10.1101/2021.09.28.21263801: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    2.2.3 Occupancy and area of different points of interest from SafeGraph data: Two of the important inputs in the simulation are the areas of different points of interests (POI) and the number of people occupying them during each time period of interest.
    SafeGraph
    suggested: None

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.