Assessment of proton-coupled conformational dynamics of SARS and MERS coronavirus papain-like proteases: Implication for designing broad-spectrum antiviral inhibitors

This article has been Reviewed by the following groups

Read the full article

Abstract

Broad-spectrum antiviral drugs are urgently needed to stop the Coronavirus Disease 2019 pandemic and prevent future ones. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is related to the SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), which have caused the previous outbreaks. The papain-like protease (PLpro) is an attractive drug target due to its essential roles in the viral life cycle. As a cysteine protease, PLpro is rich in cysteines and histidines, and their protonation/deprotonation modulates catalysis and conformational plasticity. Here, we report the pKa calculations and assessment of the proton-coupled conformational dynamics of SARS-CoV-2 in comparison to SARS-CoV and MERS-CoV PLpros using the recently developed graphical processing unit (GPU)-accelerated implicit-solvent continuous constant pH molecular dynamics method with a new asynchronous replica-exchange scheme, which allows computation on a single GPU card. The calculated pKa’s support the catalytic roles of the Cys–His–Asp triad. We also found that several residues can switch protonation states at physiological pH among which is C270/271 located on the flexible blocking loop 2 (BL2) of SARS-CoV-2/CoV PLpro. Simulations revealed that the BL2 can open and close depending on the protonation state of C271/270, consistent with the most recent crystal structure evidence. Interestingly, despite the lack of an analogous cysteine, BL2 in MERS-CoV PLpro is also very flexible, challenging a current hypothesis. These findings are supported by the all-atom fixed-charge simulations and provide a starting point for more detailed studies to assist the structure-based design of broad-spectrum inhibitors against CoV PLpros.

Article activity feed

  1. SciScore for 10.1101/2020.06.30.181305: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    From there the force field parameters and coordinate files were constructed from the CHARMM output with the LEAP utility in AMBER.
    AMBER
    suggested: (AMBER, RRID:SCR_016151)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    A main caveat of our work is the use of the GB-Neck2 implicit-solvent model27. Although it has been demonstrated in the accurate de novo folding simulations of nearly two dozen small proteins with α and β topologies 38, inherent issues such as the lack of solvent granularity may limit the accuracy of detailed conformational representation. Nonetheless, our work provides a starting point for further mechanistic investigations using higher-level approaches such as the all-atom CpHMD39 and more extensive conformational sampling to assist the structure-based drug design targeting the coronavirus PLpros.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on page 3. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.