Conformational transition of SARS-CoV-2 spike glycoprotein between its closed and open states

This article has been Reviewed by the following groups

Read the full article

Abstract

In 2020, the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people worldwide and caused the coronavirus disease 2019 (COVID-19). Spike (S) glycoproteins on the viral membrane bind to ACE2 receptors on the host cell membrane and initiate fusion, and S protein is currently among the primary drug target to inhibit viral entry. The S protein can be in a receptor inaccessible (closed) or accessible (open) state based on down and up positions of its receptor-binding domain (RBD), respectively. However, conformational dynamics and the transition pathway between closed to open states remain unexplored. Here, we performed all-atom molecular dynamics (MD) simulations starting from closed and open states of the S protein trimer in the presence of explicit water and ions. MD simulations showed that RBD forms a higher number of interdomain interactions and exhibits lower mobility in its down position than its up position. MD simulations starting from intermediate conformations between the open and closed states indicated that RBD switches to the up position through a semi-open intermediate that potentially reduces the free energy barrier between the closed and open states. Free energy landscapes were constructed, and a minimum energy pathway connecting the closed and open states was proposed. Because RBD-ACE2 binding is compatible with the semi-open state, but not with the closed state of the S protein, we propose that the formation of the intermediate state is a prerequisite for the host cell recognition.

Article activity feed

  1. SciScore for 10.1101/2020.04.17.047324: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    MD simulations: For each system, all-atom MD simulations were performed for an N, P, T ensemble in explicit solvent (water and ions) using NAMD 2.13 (Phillips et al. 2005) package with CHARMM36 (Best et al. 2012) force field.
    NAMD
    suggested: (NAMD, RRID:SCR_014894)

    Results from OddPub: Thank you for sharing your data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on pages 3, 4, 12 and 15. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.