Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp14/nsp10 exoribonuclease
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
SARS-CoV-2 is a coronavirus that emerged in 2019 and rapidly spread across the world causing a deadly pandemic with tremendous social and economic costs. Healthcare systems worldwide are under great pressure, and there is an urgent need for effective antiviral treatments. The only currently approved antiviral treatment for COVID-19 is remdesivir, an inhibitor of viral genome replication. SARS-CoV-2 proliferation relies on the enzymatic activities of the non-structural proteins (nsp), which makes them interesting targets for the development of new antiviral treatments. With the aim to identify novel SARS-CoV-2 antivirals, we have purified the exoribonuclease/methyltransferase (nsp14) and its cofactor (nsp10) and developed biochemical assays compatible with high-throughput approaches to screen for exoribonuclease inhibitors. We have screened a library of over 5000 commercial compounds and identified patulin and aurintricarboxylic acid (ATA) as inhibitors of nsp14 exoribonuclease in vitro. We found that patulin and ATA inhibit replication of SARS-CoV-2 in a VERO E6 cell-culture model. These two new antiviral compounds will be valuable tools for further coronavirus research as well as potentially contributing to new therapeutic opportunities for COVID-19.
Article activity feed
-
-
SciScore for 10.1101/2021.04.07.438812: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Cell Line Authentication not detected. Table 2: Resources
Experimental Models: Cell Lines Sentences Resources SARS-CoV-2 production: Batches of the BetaCoV/England/02/2020 (Public Health England) strain of the SARS-CoV-2 virus were produced as in our accompanying manuscripts using VERO E6 cells. VERO E6suggested: RRID:CVCL_XD71)Software and Algorithms Sentences Resources Expression constructs and protein expression in E.coli: The sequences of SARS-CoV-2 nsp14 and nsp10 (NCBI reference sequence NC_045512.2) were codon optimised for expression in … SciScore for 10.1101/2021.04.07.438812: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Cell Line Authentication not detected. Table 2: Resources
Experimental Models: Cell Lines Sentences Resources SARS-CoV-2 production: Batches of the BetaCoV/England/02/2020 (Public Health England) strain of the SARS-CoV-2 virus were produced as in our accompanying manuscripts using VERO E6 cells. VERO E6suggested: RRID:CVCL_XD71)Software and Algorithms Sentences Resources Expression constructs and protein expression in E.coli: The sequences of SARS-CoV-2 nsp14 and nsp10 (NCBI reference sequence NC_045512.2) were codon optimised for expression in E. coli using the GeneArt Gene Synthesis software (ThermoFisher scientific) and genes were ordered from GeneWiz (codon optimised DNA sequences in supplementary information). GeneWizsuggested: (GENEWIZ, RRID:SCR_003177)Screen data analysis: Screen data were analysed with custom MATLAB and R scripts. MATLABsuggested: (MATLAB, RRID:SCR_001622)Slopes were then used to calculate KM and VMAX by non-linear fitting to the Michaelis-Menten equation using GraphPad Prism. GraphPad Prismsuggested: (GraphPad Prism, RRID:SCR_002798)Results from OddPub: Thank you for sharing your data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-