Weak neuronal glycolysis sustains cognition and organismal fitness

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The energy cost of neuronal activity is mainly sustained by glucose 1,2 . However, in an apparent paradox, neurons modestly metabolize glucose through glycolysis 3–6 , a circumstance that can be accounted for by the constant degradation of 6-phosphofructo-2-kinase–fructose-2,6-bisphosphatase-3 (PFKFB3) 3,7,8 , a key glycolysis-promoting enzyme. To evaluate the in vivo physiological importance of this hypoglycolytic metabolism, here we genetically engineered mice with their neurons transformed into active glycolytic cells through Pfkfb3 expression. In vivo molecular, biochemical and metabolic flux analyses of these neurons revealed an accumulation of anomalous mitochondria, complex I disassembly, bioenergetic deficiency and mitochondrial redox stress. Notably, glycolysis-mediated nicotinamide adenine dinucleotide (NAD + ) reduction impaired sirtuin-dependent autophagy. Furthermore, these mice displayed cognitive decline and a metabolic syndrome that was mimicked by confining Pfkfb3 expression to hypothalamic neurons. Neuron-specific genetic ablation of mitochondrial redox stress or brain NAD + restoration corrected these behavioural alterations. Thus, the weak glycolytic nature of neurons is required to sustain higher-order organismal functions.

Article activity feed