Glial cells undergo rapid changes following acute chemogenetic manipulation of cortical layer 5 projection neurons

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Bidirectional communication between neurons and glial cells is crucial to establishing and maintaining normal brain function. Some of these interactions are activity-dependent, yet it remains largely unexplored how acute changes in neuronal activity affect glial-to-neuron and neuron-to-glial dynamics. Here, we use excitatory and inhibitory designer receptors exclusively activated by designer drugs (DREADD) to study the effects of acute chemogenetic manipulations of a subpopulation of layer 5 cortical projection and dentate gyrus neurons in adult (Rbp4 Cre ) mouse brains. We show that acute chemogenetic neuronal activation reduces synaptic density, and increases microglia and astrocyte reactivity, but does not affect parvalbumin (PV+) neurons, only perineuronal nets (PNN). Conversely, acute silencing increases synaptic density and decreases glial reactivity. We show fast glial response upon clozapine-N-oxide (CNO) administration in cortical and subcortical regions. Together, our work provides evidence of fast, activity-dependent, bidirectional interactions between neurons and glial cells.

Article activity feed