Modeling the effect of exposure notification and non-pharmaceutical interventions on COVID-19 transmission in Washington state
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Contact tracing is increasingly used to combat COVID-19, and digital implementations are now being deployed, many based on Apple and Google’s Exposure Notification System. These systems utilize non-traditional smartphone-based technology, presenting challenges in understanding possible outcomes. In this work, we create individual-based models of three Washington state counties to explore how digital exposure notifications combined with other non-pharmaceutical interventions influence COVID-19 disease spread under various adoption, compliance, and mobility scenarios. In a model with 15% participation, we found that exposure notification could reduce infections and deaths by approximately 8% and 6% and could effectively complement traditional contact tracing. We believe this can provide health authorities in Washington state and beyond with guidance on how exposure notification can complement traditional interventions to suppress the spread of COVID-19.
Article activity feed
-
-
SciScore for 10.1101/2020.08.29.20184135: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources We fit that model to Washington state county-level mortality data from The New York Times (37) and mobility data from the Community Mobility Reports published by Google and publicly available at (21). Googlesuggested: (Google, RRID:SCR_017097)Results from OddPub: Thank you for sharing your code.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any …
SciScore for 10.1101/2020.08.29.20184135: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources We fit that model to Washington state county-level mortality data from The New York Times (37) and mobility data from the Community Mobility Reports published by Google and publicly available at (21). Googlesuggested: (Google, RRID:SCR_017097)Results from OddPub: Thank you for sharing your code.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-