Using survey data to estimate the impact of the omicron variant on vaccine efficacy against COVID-19 infection

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Symptoms-based detection of SARS-CoV-2 infection is not a substitute for precise diagnostic tests but can provide insight into the likely level of infection in a given population. This study uses symptoms data collected in the Global COVID-19 Trends and Impact Surveys (UMD Global CTIS), and data on variants sequencing from GISAID. This work, conducted in January of 2022 during the emergence of the Omicron variant (subvariant BA.1), aims to improve the quality of infection detection from the available symptoms and to use the resulting estimates of infection levels to assess the changes in vaccine efficacy during a change of dominant variant; from the Delta dominant to the Omicron dominant period. Our approach produced a new symptoms-based classifier, Random Forest, that was compared to a ground-truth subset of cases with known diagnostic test status. This classifier was compared with other competing classifiers and shown to exhibit an increased performance with respect to the ground-truth data. Using the Random Forest classifier, and knowing the vaccination status of the subjects, we then proceeded to analyse the evolution of vaccine efficacy towards infection during different periods, geographies and dominant variants. In South Africa, where the first significant wave of Omicron occurred, a significant reduction of vaccine efficacy is observed from August-September 2021 to December 2021. For instance, the efficacy drops from 0.81 to 0.30 for those vaccinated with 2 doses (of Pfizer/BioNTech), and from 0.51 to 0.09 for those vaccinated with one dose (of Pfizer/BioNTech or Johnson & Johnson). We also extended the study to other countries in which Omicron has been detected, comparing the situation in October 2021 (before Omicron) with that of December 2021. While the reduction measured is smaller than in South Africa, we still found, for instance, an average drop in vaccine efficacy from 0.53 to 0.45 among those vaccinated with two doses. Moreover, we found a significant negative (Pearson) correlation of around − 0.6 between the measured prevalence of Omicron in several countries and the vaccine efficacy in those same countries. This prediction, in January of 2022, of the decreased vaccine efficacy towards Omicron is in line with the subsequent increase of Omicron infections in the first half of 2022.

Article activity feed

  1. SciScore for 10.1101/2022.01.21.22269636: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.