Estimation of R0 for the spread of SARS-CoV-2 in Germany from excess mortality

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

For SARS-CoV-2, R0 calculations in the range of 2–3 dominate the literature, but much higher estimates have also been published. Because capacity for RT-PCR testing increased greatly in the early phase of the Covid-19 pandemic, R0 determinations based on these incidence values are subject to strong bias. We propose to use Covid-19-induced excess mortality to determine R0 regardless of RT-PCR testing capacity. We used data from the Robert Koch Institute (RKI) on the incidence of Covid cases, Covid-related deaths, number of RT-PCR tests performed, and excess mortality calculated from data from the Federal Statistical Office in Germany. We determined R0 using exponential growth estimates with a serial interval of 4.7 days. We used only datasets that were not yet under the influence of policy measures (e.g., lockdowns or school closures). The uncorrected R0 value for the spread of SARS-CoV-2 based on RT-PCR incidence data was 2.56 (95% CI 2.52–2.60) for Covid-19 cases and 2.03 (95% CI 1.96–2.10) for Covid-19-related deaths. However, because the number of RT-PCR tests increased by a growth factor of 1.381 during the same period, these R0 values must be corrected accordingly (R0corrected = R0uncorrected/1.381), yielding 1.86 for Covid-19 cases and 1.47 for Covid-19 deaths. The R0 value based on excess deaths was calculated to be 1.34 (95% CI 1.32–1.37). A sine-function-based adjustment for seasonal effects of 40% corresponds to a maximum value of R0 January  = 1.68 and a minimum value of R0 July  = 1.01. Our calculations show an R0 that is much lower than previously thought. This relatively low range of R0 fits very well with the observed seasonal pattern of infection across Europe in 2020 and 2021, including the emergence of more contagious escape variants such as delta or omicron. In general, our study shows that excess mortality can be used as a reliable surrogate to determine the R0 in pandemic situations.

Article activity feed

  1. SciScore for 10.1101/2021.11.14.21266295: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Mobility data was taken from the Apple™ website 15.
    Apple™
    suggested: (Apple - iWork, RRID:SCR_008412)

    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.