Tracking mutational semantics of SARS-CoV-2 genomes
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Natural language processing (NLP) algorithms process linguistic data in order to discover the associated word semantics and develop models that can describe or even predict the latent meanings of the data. The applications of NLP become multi-fold while dealing with dynamic or temporally evolving datasets (e.g., historical literature). Biological datasets of genome-sequences are interesting since they are sequential as well as dynamic. Here we describe how SARS-CoV-2 genomes and mutations thereof can be processed using fundamental algorithms in NLP to reveal the characteristics and evolution of the virus. We demonstrate applicability of NLP in not only probing the temporal mutational signatures through dynamic topic modelling, but also in tracing the mutation-associations through tracing of semantic drift in genomic mutation records. Our approach also yields promising results in unfolding the mutational relevance to patient health status, thereby identifying putative signatures linked to known/highly speculated mutations of concern.
Article activity feed
-
-
SciScore for 10.1101/2021.12.21.21268187: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources A python wrapper for Dynamic Topic Models (DTM) present in gensim26 python package (version 3.8) was used on top of compiled binaries of DTM from the original paper6 to execute DTM on our corpus. pythonsuggested: (IPython, RRID:SCR_001658)Results from OddPub: Thank you for sharing your data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any …
SciScore for 10.1101/2021.12.21.21268187: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources A python wrapper for Dynamic Topic Models (DTM) present in gensim26 python package (version 3.8) was used on top of compiled binaries of DTM from the original paper6 to execute DTM on our corpus. pythonsuggested: (IPython, RRID:SCR_001658)Results from OddPub: Thank you for sharing your data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on page 18. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-