Ranking the effectiveness of non-pharmaceutical interventions to counter COVID-19 in UK universities with vaccinated population

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Several universities around the world have resumed in-person teaching after successful vaccination campaigns have covered 70/80% of the population. In this study, we combine a new compartmental model with an optimal control formulation to discover, among different non-pharmaceutical interventions, the best prevention strategy to maximize on-campus activities while keeping spread under control. Composed of two interconnected Susceptible-Exposed-Infected-Quarantined-Recovered (SEIQR) structures, the model enables staff-to-staff infections, student-to-staff cross infections, student-to-student infections, and environment-to-individual infections. Then, we model input variables representing the implementation of different non-pharmaceutical interventions and formulate and solve optimal control problems for four desired scenarios: minimum number of cases, minimum intervention, minimum non-quarantine intervention, and minimum quarantine intervention. Our results reveal the particular significance of mask wearing and social distancing in universities with vaccinated population (with proportions according to UK data). The study also reveals that quarantining infected students has a higher importance than quarantining staff. In contrast, other measures such as environmental disinfection seems to be less important.

Article activity feed

  1. SciScore for 10.1101/2021.11.07.21266028: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Another limitation is that the input variables (the interventions) in our optimal control problem are continuous in magnitude. It may be difficult to give practical significance to the numerical values representing the interventions. However, we stress that the optimal trajectories are used here only to compare the relative importance of different interventions. Further research can be done on discretizing the magnitude of the input variables into specific levels that correspond to scientifically-defined interpretable practical meanings.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.