GIVE statistic for goodness of fit in instrumental variables models with application to COVID data

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Since COVID-19 outbreak, scientists have been interested to know whether there is any impact of the Bacillus Calmette–Guerin (BCG) vaccine against COVID-19 mortality or not. It becomes more relevant as a large population in the world may have latent tuberculosis infection (LTBI), for which a person may not have active tuberculosis but persistent immune responses stimulated by Mycobacterium tuberculosis antigens, and that means, both LTBI and BCG generate immunity against COVID-19. In order to understand the relationship between LTBI and COVID-19 mortality, this article proposes a measure of goodness of fit, viz., Goodness of Instrumental Variable Estimates (GIVE) statistic, of a model obtained by Instrumental Variables estimation. The GIVE statistic helps in finding the appropriate choice of instruments, which provides a better fitted model. In the course of study, the large sample properties of the GIVE statistic are investigated. As indicated before, the COVID-19 data is analysed using the GIVE statistic, and moreover, simulation studies are also conducted to show the usefulness of the GIVE statistic along with analysis of well-known Card data.

Article activity feed

  1. SciScore for 10.1101/2021.04.18.440376: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.