Distribution equality as an optimal epidemic mitigation strategy

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Upon the development of a therapeutic, a successful response to a global pandemic relies on efficient worldwide distribution, a process constrained by our global shipping network. Most existing strategies seek to maximize the outflow of the therapeutics, hence optimizing for rapid dissemination. Here we find that this intuitive approach is, in fact, counterproductive. The reason is that by focusing strictly on the quantity of disseminated therapeutics, these strategies disregard the way in which this quantity distributes across destinations. Most crucially—they overlook the interplay of the therapeutic spreading patterns with those of the pathogens. This results in a discrepancy between supply and demand, that prohibits efficient mitigation even under optimal conditions of superfluous flow. To solve this, we design a dissemination strategy that naturally follows the predicted spreading patterns of the pathogens, optimizing not just for supply volume, but also for its congruency with the anticipated demand. Specifically, we show that epidemics spread relatively uniformly across all destinations, prompting us to introduce an equality constraint into our dissemination that prioritizes supply homogeneity. This strategy may, at times, slow down the supply rate in certain locations, however, thanks to its egalitarian nature, which mimics the flow of the pathogens, it provides a dramatic leap in overall mitigation efficiency, potentially saving more lives with orders of magnitude less resources.

Article activity feed

  1. SciScore for 10.1101/2020.09.15.20194506: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.