Comparing protein–protein interaction networks of SARS-CoV-2 and (H1N1) influenza using topological features
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
SARS-CoV-2 pandemic first emerged in late 2019 in China. It has since infected more than 298 million individuals and caused over 5 million deaths globally. The identification of essential proteins in a protein–protein interaction network (PPIN) is not only crucial in understanding the process of cellular life but also useful in drug discovery. There are many centrality measures to detect influential nodes in complex networks. Since SARS-CoV-2 and (H1N1) influenza PPINs pose 553 common human proteins. Analyzing influential proteins and comparing these networks together can be an effective step in helping biologists for drug-target prediction. We used 21 centrality measures on SARS-CoV-2 and (H1N1) influenza PPINs to identify essential proteins. We applied principal component analysis and unsupervised machine learning methods to reveal the most informative measures. Appealingly, some measures had a high level of contribution in comparison to others in both PPINs, namely Decay, Residual closeness, Markov, Degree, closeness (Latora), Barycenter, Closeness (Freeman), and Lin centralities. We also investigated some graph theory-based properties like the power law, exponential distribution, and robustness. Both PPINs tended to properties of scale-free networks that expose their nature of heterogeneity. Dimensionality reduction and unsupervised learning methods were so effective to uncover appropriate centrality measures.
Article activity feed
-
-
SciScore for 10.1101/2021.11.02.463717: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources Some validation measures are used to select the most suitable clustering method among hierarchical, k-means, and PAM (Partitioning Around Medoids) methods using clValid package [44]. clValidsuggested: (clValid , RRID:SCR_014626)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdenti…
SciScore for 10.1101/2021.11.02.463717: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources Some validation measures are used to select the most suitable clustering method among hierarchical, k-means, and PAM (Partitioning Around Medoids) methods using clValid package [44]. clValidsuggested: (clValid , RRID:SCR_014626)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- No funding statement was detected.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-