Comparing protein–protein interaction networks of SARS-CoV-2 and (H1N1) influenza using topological features

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

SARS-CoV-2 pandemic first emerged in late 2019 in China. It has since infected more than 298 million individuals and caused over 5 million deaths globally. The identification of essential proteins in a protein–protein interaction network (PPIN) is not only crucial in understanding the process of cellular life but also useful in drug discovery. There are many centrality measures to detect influential nodes in complex networks. Since SARS-CoV-2 and (H1N1) influenza PPINs pose 553 common human proteins. Analyzing influential proteins and comparing these networks together can be an effective step in helping biologists for drug-target prediction. We used 21 centrality measures on SARS-CoV-2 and (H1N1) influenza PPINs to identify essential proteins. We applied principal component analysis and unsupervised machine learning methods to reveal the most informative measures. Appealingly, some measures had a high level of contribution in comparison to others in both PPINs, namely Decay, Residual closeness, Markov, Degree, closeness (Latora), Barycenter, Closeness (Freeman), and Lin centralities. We also investigated some graph theory-based properties like the power law, exponential distribution, and robustness. Both PPINs tended to properties of scale-free networks that expose their nature of heterogeneity. Dimensionality reduction and unsupervised learning methods were so effective to uncover appropriate centrality measures.

Article activity feed

  1. SciScore for 10.1101/2021.11.02.463717: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Some validation measures are used to select the most suitable clustering method among hierarchical, k-means, and PAM (Partitioning Around Medoids) methods using clValid package [44].
    clValid
    suggested: (clValid , RRID:SCR_014626)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.