Quantifying superspreading for COVID-19 using Poisson mixture distributions
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
The number of secondary cases, i.e. the number of new infections generated by an infectious individual, is an important parameter for the control of infectious diseases. When individual variation in disease transmission is present, like for COVID-19, the distribution of the number of secondary cases is skewed and often modeled using a negative binomial distribution. However, this may not always be the best distribution to describe the underlying transmission process. We propose the use of three other offspring distributions to quantify heterogeneity in transmission, and we assess the possible bias in estimates of the mean and variance of this distribution when the data generating distribution is different from the one used for inference. We also analyze COVID-19 data from Hong Kong, India, and Rwanda, and quantify the proportion of cases responsible for 80% of transmission, $$p_{80\%}$$ p 80 % , while acknowledging the variation arising from the assumed offspring distribution. In a simulation study, we find that variance estimates may be biased when there is a substantial amount of heterogeneity, and that selection of the most accurate distribution from a set of distributions is important. In addition we find that the number of secondary cases for two of the three COVID-19 datasets is better described by a Poisson-lognormal distribution.
Article activity feed
-
-
SciScore for 10.1101/2020.11.27.20239657: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this …
SciScore for 10.1101/2020.11.27.20239657: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-