A modelling analysis of the effectiveness of second wave COVID-19 response strategies in Australia

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

There is a significant challenge in responding to second waves of COVID-19 cases, with governments being hesitant in introducing hard lockdown measures given the resulting economic impact. In addition, rising case numbers reflect an increase in coronavirus transmission some time previously, so timing of response measures is highly important. Australia experienced a second wave from June 2020 onwards, confined to greater Melbourne, with initial social distancing measures failing to reduce rapidly increasing case numbers. We conducted a detailed analysis of this outbreak, together with an evaluation of the effectiveness of alternative response strategies, to provide guidance to countries experiencing second waves of SARS-Cov-2 transmission. An individual-based transmission model was used to (1) describe a second-wave COVID-19 epidemic in Australia; (2) evaluate the impact of lockdown strategies used; and (3) evaluate effectiveness of alternative mitigation strategies. The model was calibrated using daily diagnosed case data prior to lockdown. Specific social distancing interventions were modelled by adjusting person-to-person contacts in mixing locations. Modelling earlier activation of lockdown measures are predicted to reduce total case numbers by more than 50%. Epidemic peaks and duration of the second wave were also shown to reduce. Our results suggest that activating lockdown measures when second-wave case numbers first indicated exponential growth, would have been highly effective in reducing COVID-19 cases. The model was shown to realistically predict the epidemic growth rate under the social distancing measures applied, validating the methods applied. The timing of social distancing activation is shown to be critical to their effectiveness. Data showing exponential rise in cases, doubling every 7–10 days, can be used to trigger early lockdown measures. Such measures are shown to be necessary to reduce daily and total case numbers, and the consequential health burden, so preventing health care facilities being overwhelmed. Early control of second wave resurgence potentially permits strict lockdown measures to be eased earlier.

Article activity feed

  1. SciScore for 10.1101/2020.11.16.20232843: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    As with all model-based studies, there are limitations on what features we are able to replicate in detail, and what approximations need to be taken. These involve availability of data, both at the virus transmission level and the population level. We used an estimated basic reproduction number obtained from data gathered in Wuhan, China prior to social distancing activation, and used that to estimate the probability of transmission between two individuals. Detailed census data were used in model development, to create households, workplaces, and education establishments in as much detail as data sources permitted. This allowed us to model movement of individuals between their homes and work and education locations. However, mobility in the wider community was estimated based on the probability of random contact between pairs of individuals, weighted by distance from their homes. Obtaining data on actual population mobility, before and during periods of social distancing restrictions, would aid the fidelity of individual-based models such as ours, but obtaining such data is clearly a challenging task. While others have accessed de-identified mobile phone data to estimate movement throughout a population, as in[34], an example of how identified data can be accessed and applied in practice is given by South Korea. Here there is general support for government agencies having detailed location and mobility data for the whole population, as a public good. South Korea invested in I...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.