Modelling Singapore COVID-19 pandemic with a SEIR multiplex network model

This article has been Reviewed by the following groups

Read the full article

Abstract

In this paper, we have implemented a large-scale agent-based model to study the outbreak of coronavirus infectious diseases (COVID-19) in Singapore, taking into account complex human interaction pattern. In particular, the concept of multiplex network is utilized to differentiate between social interactions that happen in households and workplaces. In addition, weak interactions among crowds, transient interactions within social gatherings, and dense human contact between foreign workers in dormitories are also taken into consideration. Such a categorization in terms of a multiplex of social network connections together with the Susceptible-Exposed-Infectious-Removed (SEIR) epidemic model have enabled a more precise study of the feasibility and efficacy of control measures such as social distancing, work from home, and lockdown, at different moments and stages of the pandemics. Using this model, we study an epidemic outbreak that occurs within densely populated residential areas in Singapore. Our simulations show that residents in densely populated areas could be infected easily, even though they constitute a very small fraction of the whole population. Once infection begins in these areas, disease spreading is uncontrollable if appropriate control measures are not implemented.

Article activity feed

  1. SciScore for 10.1101/2020.05.31.20118372: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.