Diagnosis, clinical characteristics, and outcomes of COVID-19 patients from a large healthcare system in northern New Jersey

This article has been Reviewed by the following groups

Read the full article

Abstract

New Jersey was an early epicenter for the COVID-19 pandemic in the United States, yet information on hospitalized COVID-19 patients from this area is scarce. This study aimed to provide data on demographics and clinical features of a hospitalized patient population who were confirmed with infection by our in-house (CDI) real-time reverse-transcription polymerase chain reaction (RT-PCR) test. We included consecutive patients who were admitted to Hackensack Meridian Health system hospitals with laboratory-confirmed diagnoses of COVID-19 at Hackensack University Medical Center by the CDI virus test between March 12, 2020, and April 8, 2020. Clinical data and viral testing results were collected and analyzed for characteristics associated with outcomes, as well as the correlation with viral load. A total of 722 patients were included in the study, with a median age of 63 (interquartile range (IQR), 51–75) and 272 (37.7%) females. Mortality of this case series was 25.8%, with a statistically significant linear increase observed from age 40 to ≥ 80 by 10-year intervals. Viral load, as indicated by the cycle of threshold (Ct) values from the RT-PCR test, was significantly higher in the oldest patient group (≥ 80), and inversely correlated with survival. This is the first report to describe the clinical characteristics and outcomes in a large hospitalized COVID-19 patient series from New Jersey. Findings from this study are valuable to the ongoing response of both nationwide healthcare networks and the medical research community.

Article activity feed

  1. SciScore for 10.1101/2020.08.07.20170357: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board StatementIRB: The study was approved by the HMH institutional review board.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Statistical analysis: Statistical analyses were carried out using SPSS version 17.0, and graphs were plotted using GraphPad Prism version 8.4.2.
    SPSS
    suggested: (SPSS, RRID:SCR_002865)
    GraphPad Prism
    suggested: (GraphPad Prism, RRID:SCR_002798)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Our study has several limitations. First, the study population only included patients who were confirmed to have SARS-CoV-2 infection by the CDI-enhanced test during the specified period of time. Due to the proximity to the laboratory performing the testing, patients from HUMC (n=604) accounted for 83.7% of the study population, while the rest were distributed in 11 other HMH hospitals. Second, clinical data were retrieved from a pre-designed database established for other purposes, and with missing values in multiple data fields. Third, given the retrospective observational nature of our study, no causal effect can be inferred, even if significant associations are observed. In summary, we described the basic clinical features and outcomes of a patient population hospitalized within a large healthcare network during the early phase of the pandemic in NJ. In particular, we leveraged our experience developing an in-house viral testing platform towards patient management and infection control, which proved to be valuable and beneficial to both our healthcare network and the medical research community.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.