Compositional cyber-physical epidemiology of COVID-19

This article has been Reviewed by the following groups

Read the full article

Abstract

The COVID-19 pandemic has posed significant challenges globally. Countries have adopted different strategies with varying degrees of success. Epidemiologists are studying the impact of government actions using scenario analysis. However, the interactions between the government policy and the disease dynamics are not formally captured. We, for the first time, formally study the interaction between the disease dynamics, which is modelled as a physical process, and the government policy, which is modelled as the adjoining controller. Our approach enables compositionality, where either the plant or the controller could be replaced by an alternative model. Our work is inspired by the engineering approach for the design of Cyber-Physical Systems. Consequently, we term the new framework Compositional Cyber-Physical Epidemiology. We created different classes of controllers and applied these to control the disease in New Zealand and Italy. Our controllers closely follow government decisions based on their published data. We not only reproduce the pandemic progression faithfully in New Zealand and Italy but also show the tradeoffs produced by differing control actions.

Article activity feed

  1. SciScore for 10.1101/2020.04.26.20081125: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    We use the MATLAB® function lsqcurvefit to search for these reproduction numbers for each phase by minimizing the square of the residual error between the SEIR simulation and the reported data [46].
    MATLAB®
    suggested: (MATLAB, RRID:SCR_001622)

    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.