SARS-ANI: a global open access dataset of reported SARS-CoV-2 events in animals

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The zoonotic origin of SARS-CoV-2, the etiological agent of COVID-19, is not yet fully resolved. Although natural infections in animals are reported in a wide range of species, large knowledge and data gaps remain regarding SARS-CoV-2 in animal hosts. We used two major health databases to extract unstructured data and generated a global dataset of SARS-CoV-2 events in animals. The dataset presents harmonized host names, integrates relevant epidemiological and clinical data on each event, and is readily usable for analytical purposes. We also share the code for technical and visual validation of the data and created a user-friendly dashboard for data exploration. Data on SARS-CoV-2 occurrence in animals is critical to adapting monitoring strategies, preventing the formation of animal reservoirs, and tailoring future human and animal vaccination programs. The FAIRness and analytical flexibility of the data will support research efforts on SARS-CoV-2 at the human-animal-environment interface. We intend to update this dataset weekly for at least one year and, through collaborations, to develop it further and expand its use.

Article activity feed

  1. SciScore for 10.1101/2022.04.11.487836: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Potential subsequent editions or modifications of the report by ProMED-mail and/or OIE-WAHIS was not considered.
    ProMED-mail
    suggested: (ProMed-Mail, RRID:SCR_010260)

    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.