Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Understanding the particle size distribution in the air and patterns of environmental contamination of SARS-CoV-2 is essential for infection prevention policies. Here we screen surface and air samples from hospital rooms of COVID-19 patients for SARS-CoV-2 RNA. Environmental sampling is conducted in three airborne infection isolation rooms (AIIRs) in the ICU and 27 AIIRs in the general ward. 245 surface samples are collected. 56.7% of rooms have at least one environmental surface contaminated. High touch surface contamination is shown in ten (66.7%) out of 15 patients in the first week of illness, and three (20%) beyond the first week of illness ( p  = 0.01, χ 2 test). Air sampling is performed in three of the 27 AIIRs in the general ward, and detects SARS-CoV-2 PCR-positive particles of sizes >4 µm and 1–4 µm in two rooms, despite these rooms having 12 air changes per hour. This warrants further study of the airborne transmission potential of SARS-CoV-2.

Article activity feed

  1. SciScore for 10.1101/2020.03.29.20046557: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.
    Cell Line Authenticationnot detected.

    Table 2: Resources

    Experimental Models: Cell Lines
    SentencesResources
    Air sampling: Six NIOSH BC 251 bioaerosol samplers were placed in each of three AIIRs in the general ward to collect air samples.
    NIOSH BC 251
    suggested: None
    Software and Algorithms
    SentencesResources
    Statistical analysis: Statistical analysis was performed using Stata version 15.1 (StataCorp, College Station, Texas) and GraphPad Prism 8.0 (GraphPad Software, Inc., San Diego).
    StataCorp
    suggested: (Stata, RRID:SCR_012763)
    GraphPad
    suggested: (GraphPad Prism, RRID:SCR_002798)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.