Ubiquitination of gasdermin D N-terminal domain directs its membrane translocation and pore formation during pyroptosis

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Gasdermin D (GSDMD) is a critical pyroptosis mediator, consisting of one N-terminal pore-forming domain and one C-terminal auto-inhibitory domain. The free N-terminal domain (GD-NT), which is released through caspase-1/11 cleavage, exhibits distinct features from the full-length GSDMD (GD-FL), including oligomerization, membrane translocation, and pore-formation. However, the underlying mechanisms are not well elucidated. Here, we found that GD-NT, but not GD-FL, was massively ubiquitinated in cells. The K63-linked polyubiquitination of GD-NT at Lys236/237 (human/mouse), catalyzed by TRAF1, directly prompted its membrane translocation and pore-formation during pyroptosis. Inhibition of GD-NT ubiquitination via site-directed mutations or the UBA1 inhibitor PYR-41 suppressed cell death in several pyroptosis cell models. Additionally, applying PYR-41 in septic mice efficiently suppressed the release of IL-18 and TNFα. Thus, GD-NT ubiquitination is a key regulatory mechanism controlling its membrane localization and activation, which may provide a novel target for modulating immune activity in pyroptosis-related diseases.

Article activity feed