How can risk of COVID-19 transmission be minimised in domiciliary care for older people: development, parameterisation and initial results of a simple mathematical model

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

This paper proposes and analyses a stochastic model for the spread of an infectious disease transmitted between clients and care workers in the UK domiciliary (home) care setting. Interactions between clients and care workers are modelled using specially generated networks, with network parameters reflecting realistic patterns of care needs and visit allocation. These networks are then used to simulate a susceptible-exposed-infected-recovered/dead (SEIR/D)-type epidemic dynamics with different numbers of infectious and recovery stages. The results indicate that with the same overall capacity provided by care workers, the minimum peak proportion of infection and the smallest overall size of infection are achieved for the highest proportion of overlap between visit allocation, i.e. when care workers have the highest chances of being allocated a visit to the same client they have visited before. An intuitive explanation of this is that while providing the required care coverage, maximising overlap in visit allocation reduces the possibility of an infectious care worker inadvertently spreading the infection to other clients. The model is generic and can be adapted to any directly transmitted infectious disease, such as, more recently, corona virus disease 2019, provided accurate estimates of disease parameters can be obtained from real data.

Article activity feed

  1. SciScore for 10.1101/2021.05.05.21256598: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.