Estimating the case fatality ratio for COVID-19 using a time-shifted distribution analysis

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Estimating the case fatality ratio (CFR) for COVID-19 is an important aspect of public health. However, calculating CFR accurately is problematic early in a novel disease outbreak, due to uncertainties regarding the time course of disease and difficulties in diagnosis and reporting of cases. In this work, we present a simple method for calculating the CFR using only public case and death data over time by exploiting the correspondence between the time distributions of cases and deaths. The time-shifted distribution (TSD) analysis generates two parameters of interest: the delay time between reporting of cases and deaths and the CFR. These parameters converge reliably over time once the exponential growth phase has finished. Analysis is performed for early COVID-19 outbreaks in many countries, and we discuss corrections to CFR values using excess-death and seroprevalence data to estimate the infection fatality ratio (IFR). While CFR values range from 0.2% to 20% in different countries, estimates for IFR are mostly around 0.5–0.8% for countries that experienced moderate outbreaks and 1–3% for severe outbreaks. The simplicity and transparency of TSD analysis enhance its usefulness in characterizing a new disease as well as the state of the health and reporting systems.

Article activity feed

  1. SciScore for 10.1101/2020.10.25.20216671: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.