Navigating hospitals safely through the COVID-19 epidemic tide: Predicting case load for adjusting bed capacity

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Background:

The pressures exerted by the coronavirus disease 2019 (COVID-19) pandemic pose an unprecedented demand on healthcare services. Hospitals become rapidly overwhelmed when patients requiring life-saving support outpace available capacities.

Objective:

We describe methods used by a university hospital to forecast case loads and time to peak incidence.

Methods:

We developed a set of models to forecast incidence among the hospital catchment population and to describe the COVID-19 patient hospital-care pathway. The first forecast utilized data from antecedent allopatric epidemics and parameterized the care-pathway model according to expert opinion (ie, the static model). Once sufficient local data were available, trends for the time-dependent effective reproduction number were fitted, and the care pathway was reparameterized using hazards for real patient admission, referrals, and discharge (ie, the dynamic model).

Results:

The static model, deployed before the epidemic, exaggerated the bed occupancy for general wards (116 forecasted vs 66 observed), ICUs (47 forecasted vs 34 observed), and predicted the peak too late: general ward forecast April 9 and observed April 8 and ICU forecast April 19 and observed April 8. After April 5, the dynamic model could be run daily, and its precision improved with increasing availability of empirical local data.

Conclusions:

The models provided data-based guidance for the preparation and allocation of critical resources of a university hospital well in advance of the epidemic surge, despite overestimating the service demand. Overestimates should resolve when the population contact pattern before and during restrictions can be taken into account, but for now they may provide an acceptable safety margin for preparing during times of uncertainty.

Article activity feed

  1. SciScore for 10.1101/2020.07.02.20143206: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.