County-level estimates of excess mortality associated with COVID-19 in the United States

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

No abstract available

Article activity feed

  1. SciScore for 10.1101/2021.04.23.21255564: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    This analysis had several limitations. First, unlike prior state-level analyses which leveraged weekly data on deaths, the present study used cumulative data on COVID-19 and all-cause mortality for all of 2020. Given this limitation in the available data, it was not possible to examine changes in excess mortality over time or trends in the proportion of deaths not assigned to COVID-19 at the county level. Examining trends in excess mortality using small-area data is a priority for future research which may help to distinguish the direct effects of the pandemic from indirect consequences associated with interruptions in health care and the social and economic consequences of pandemic response measures. Second, the provisional county-level mortality files released by the NCHS did not include information on cause of death, and therefore it was not possible to disentangle the sources of excess deaths in 2020. Decomposing excess deaths by cause of death will be critical to understanding why some counties have a higher fraction of unassigned deaths than others and the extent to which the discrepancies are explained by COVID-19 death under counts versus indirect pandemic effects. Third, the data used in the present study are provisional in nature and may be subject to further corrections by the NCHS in the process of generating final estimates. In conclusion, the present study builds on prior work by extending estimates of excess mortality and excess deaths not assigned to COVID-19 ...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.