Defining Proximity Proteome of Histone Modifications by Antibody-Mediated Protein A-APEX2 Labeling

This article has been Reviewed by the following groups

Read the full article

Listed in

Log in to save this article

Abstract

Proximity labeling catalyzed by promiscuous enzymes, such as APEX2, has emerged as a powerful approach to characterize multiprotein complexes and protein–protein interactions. However, current methods depend on the expression of exogenous fusion proteins and cannot be applied to identify proteins surrounding post-translationally modified proteins. To address this limitation, we developed a new method to label proximal proteins of interest by antibody-mediated protein A-ascorbate peroxidase 2 (pA-APEX2) labeling (AMAPEX). In this method, a modified protein is bound in situ by a specific antibody, which then tethers a pA-APEX2 fusion protein. Activation of APEX2 labels the nearby proteins with biotin; the biotinylated proteins are then purified using streptavidin beads and identified by mass spectrometry. We demonstrated the utility of this approach by profiling the proximal proteins of histone modifications including H3K27me3, H3K9me3, H3K4me3, H4K5ac, and H4K12ac, as well as verifying the co-localization of these identified proteins with bait proteins by published ChIP-seq analysis and nucleosome immunoprecipitation. Overall, AMAPEX is an efficient method to identify proteins that are proximal to modified histones.

Article activity feed

  1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Reply to the reviewers

    Manuscript number: RC-2021-00733

    Corresponding author(s): Haiyun Gan

    Sara Monaco, PhD Managing Editor Review Commons

    Dear Dr. Monaco,

    We would like to thank all the reviewers for their insightful and constructive comments, which have helped us to improve our work. Please find below our responses to each of the concerns raised by the reviewers.

    Sincerely

    Haiyun


    Reviewer #1 (Evidence, reproducibility and clarity (Required)):

    **Summary:**

    • In this article, Li and colleagues demonstrate the utility of a novel proximity labeling-based strategy, which they term AMAPEX (antibody-mediated protein A APEX) for the proteomic characterization of the protein environment of specific histone modifications. They apply this new methodology in mouse embryonic fibroblasts for subsequent purification of biotinylated proteins and mass-spectrometric identification. **Major comments:**

    • The authors present a high quality, descriptive manuscript that introduces a novel proximity labeling approach from a mostly technical point of view. The presentation of the data and methods are mostly clear, such that they should be easy to reproduce.

    We thank the reviewer for the positive view of our work.

    • The biggest shortcoming of the study in its current form seems to be the lack of a proper assessment of the method's sensitivity AND -most importantly also- specificity. The authors do not validate potentially new interactors of the modified histones experimentally, which would highlight their technology as a discovery tool. Without the assessment of newly identified proteins, these could simply represent false positives, which would point towards an additional requirement for optimization of the experimental setups. In that light the newly identified proteins are merely potential histone interactors. Validation would require establishment or purchase of additional antibodies, or alternatively cloning and transfection of respective candidates, which will probably take an extra 2-3 months of work. While the study may be publishable in its current form, this validation seems a valuable investment to strengthen the preliminary conclusions.

    We agree with the reviewer that lack of validation of our approach is the major shortcoming of our study. As described in our manuscript, we could identify most of the histone interacting proteins found by other methods in the published data(Vermeulen* et al, 2010; Villasenor et al*, 2020) (fig. 2A). We also provide evidence that the H3K27me3 proteins (NSD1, Brd9) identified by H3K27me3 AMAPEX are co-localized with H3K27me3 at the same genomic regions (fig. 2C). In addition, as we observed the enrichment of splicing proteins of the H4K5ac interacting proteins, we purified nucleosomes and performed SF3B1 IP and confirmed the interaction of SF3B1 with H4K5ac. We also performed H3K27me3 mono-nucleosome IP and confirmed the interaction between H3K27me3 and NSD2. Together, these results suggested that AMAPEX is a reliable method to map histone proximal proteins. We have added the SF3B1/H4K5ac, H3K27me3/NSD2 binding data to the revised manuscript (Fig. 2E and Fig. 7C).

    • With two biological replicates the study fulfills the minimum requirements for reproducibility, however, it would benefit from an additional replicate.

    We added extra replicates in the assays for H3K27me3 and H3K4me3 (Fig. 2A and Fig. 6A ).

    **Minor point:**

    • The sentences in lines 22f (and 44f) could be misunderstood. Please rephrase statements to be unambiguous that it specifies the proteomic surrounding of post-translationally modified proteins. The proximity labeling technologies may themselves be limited in identifying post-translationally modified proteins, as they label reactive side-chains that are often targeted by PTMs. Post-translationally modified lysine residues cannot be targeted by biotin ligase-based methodologies, as tyrosine phosphorylations cannot be assessed by peroxidase-based labeling.

    We agree that these sentences are confusing. We rephrased the sentence to “cannot be applied to identify proteins surrounding of post-translationally modified proteins” and “mapping the biomolecules that are proximal to post-translationally modified (PTM) proteins like histone modifications is complex” in our revised manuscript.

    Reviewer #1 (Significance (Required)):

    • From a technical point of view, most of the key conclusions of this paper are convincing. Assessing the proteomic environment of post-translationally modified proteins is of extremely high interest and the methodology seems broadly applicable to address such questions. It should be noted that proximity labeling has not originally been utilized to map protein-protein interactions, as the enzymatic activities available probe their surroundings, this could be an over-interpretation. Nonetheless, the "proteomic surrounding" of target proteins, which would also include hard to identify transient interactions is of high general interest for molecular biologists.

    Thanks so much, we have rephrased our sentences in the revised manuscript.

    • Although it can be generally agreed that having to express an exogenous fusion protein is a limitation of current proximity labeling setups, the methodology presented here in turn has the limitation that it cannot be performed in living cells, which is a significant disadvantage.

    We agree that it is a disadvantage that our assay cannot be done in living cells, as most of the antibody-based assays have these limitations. However, we have successfully applied the AMAPEX to the cell samples under native conditions and we have included the results in the revised manuscript (Fig. 8)

    Moreover, our method working under fixation conditions can be potentially applied to FFPE samples. We will add discussion to our revised manuscript.

    My lab is establishing and constantly improving various proximity labeling methodologies in combination with mass spectrometry for sub-organellar proteomics. While the technology is sound and well executed, I am not an expert in the biology of histone modifications and the proteins involved and cannot assess the novelty nor the actual value of the generated datasets. It appears to me though that additional validation by independent experiments would strengthen the manuscript. The authors describe the usefulness of the technology mainly in confirming known interactors of modified histones, however, it would be nice (for non-specialists) to explicitly state how high the coverage of the known interactors is and discuss why some of them might have been missed.

    Thanks for the suggestion. We have added the statement of the coverage of the known interactors in our revised manuscript and we also include discussions.

    • The manuscript in its current form completely lacks a discussion of the presented data. Even if the focus will remain on the technical aspects, the findings should be properly discussed by comparison to other proteomics approaches studying histones. Ideally the data should also be discussed in the light of current proximity labeling technologies and potential future directions.

    We have added the discussion part to our revised manuscript.

    • While I cannot assess the value for histone research, the manuscript will be very interesting for experts focusing on proximity labeling technologies and subcellular proteomics. Reviewer #2 (Evidence, reproducibility and clarity (Required)):

    • This work describes interesting approach for mapping interactome of specifically modified histone protein using antibody-based APEX2. Although it contains interesting results and useful techniques for biological community, I found that it requires revision and addition for the publication.

    • I could understand the reason using antibody-based proximity labeling approach for mapping the biomolecules that interact with post-translationally modified histone because it should be complicated to map it with exogenous protein expression approach. However, the introduction of antibody-conjugated APEX2 should require fixation and permeabilization steps that can usually compromise ultrastructure. The authors should comment whether these procedures can affect protein composition and structures of nucleosome in the Discussion part of this manuscript.

    We agree with the reviewer. To address the concerns raised here, we have performed AMPEX under native conditions (H3K37me3). Our results showed that AMPEX under native conditions can still identify most of the surrounding proteins identified with crosslink approach. We have added the data to the revised manuscript.

    There are also advantages to perform the AMAEX with fixed samples, which may help capture the temporary events. We have added this to the discussion of the revised manuscript.

    Formaldehyde crosslinking may cause undesired effect. For instance, the nuclear proteins/loci are not equally efficiently cross-linked; cross-linking may trigger the DNA damage response; crosslinking can also mask epitopes of some antibodies, affecting antibody/antigen binding. However, most of the approaches studying chromatin/nucleosome in cells requires crosslinking and permeabilization. We have included discussion about whether fixation and permeabilization affects protein composition and structures of nucleosome.

    • For generation of biotin-phenoxyl radical, HRP-conjugated antibody can be utilized as shown in BAR method (Daniel Z Bar et al. Nat Methods, 2018, 15, 127-133). Since secondary-HRP antibody is commercially available, one cannot make an effort to express and purify pA-APEX2 for this approach. The authors should clearly explain why they selected APEX2 and what is an expected advance(s) using APEX2 in their approach

    We have compared pA-APEX2 with secondary-HRP and we found that pA-APEX2 can give better specificity as there more proteins identified by H3K27me3 mediated APEX2 located in the nuclear than that of HRP. We found that while only 33.31% of proteins identified by HRP based method locates in the nuclear, 69.4% of that identified by pA-APEX2 locates in nuclear, which implicates the increased specificity of the pA-APEX2 method compared to HRP conjugated 2nd antibody. We have added to data to revised manuscript (Fig. 3C, D).

    • For the detection of the APEX-mediated biotinylated proteins, direct mass identification of tyrosine-modified peptides with chemical probes can tell the most correct information of the proximal proteins (see Lee SY et al. J. Am. Chem. Soc. 2017, 139, 3651-3662; Namrata D Udeshi et al. Nature Methods 2017, 14, 1167-1170). Thus, if the authors can obtain the biotin-modified peptide information from each antibody-conjugated APEX2, the quality of their interactome results should be much improved. If authors may be under the situation that cannot conduct further mass experiments, it might be required to check whether their important finding molecules (e.g. Arid2, Brd7, Nsd2) are really "biotinylated" by conducting Streptavidin-HRP western blot experiment after enrichment of those proteins by using primary antibody. If biotinylation is specifically conducted by pA-APEX2 with H3K27me3 antibody, the authors can observe SA-HRP blot signal on the enriched protein band on the membrane. Negative controls should be the samples omit pA-APEX2, H3K27me3 antibody, biotin-phenol, H2O2, respectively or using different PTM targeted primary antibody. This result can confirm that their findings are enriched from proximity-dependent biotinylation of APEX2, not from spurious binding events to the other biotinylated proteins or self-labeled bait proteins.

    We thank the reviewer’s suggestion. We agree that finding the biotinylated peptides of the discovered proteins in our experiments could make the results more convincing. A variable modification of biotin-phenol on tyrosine was added to the search setting of MaxQuant (version 1.6.10.43), which indeed led to the identification of very few (only ten) biotinylated peptides without the ones from Arid2, Brd7, or Nsd2. However, these results were not surprising. Since, we pulled down the low abundant target proteins based on the strong binding of biotin-streptavidin (Kd ≈ 10−14–10−16 M ) (Laitinen* et al, 2007)., which is also unusually stable against heat, denaturants, extremes of pH and proteolytic enzymes(Wilchek et al*, 2006). These were considered as the obvious advantages of the technology. Thereafter, to obtain the better peptide coverage, on-bead tryptic digestion was performed under a relatively mild condition (50mM HEPES pH8.0, 1μM CaCl2, and 2% ACN). Therefore, it is highly likely that, the biotinylated peptides were still trapped on the streptavidin beads but not detectable in the samples.

    We indeed performed the Streptavidin-HRP western blot experiment and compared to the samples omit H3K27me3 antibody, H2O2, or samples of IgG, there is increased SA-HRP blot signal in the samples conducted by pA-APEX2 with H3K27me3 antibody (Supplementary Fig. 1F).

    Reviewer #2 (Significance (Required)):

    • For antibody-binding APEX2 strategy, this work is not the first one and the authors should mention the precedent work in the manuscript: Jisu Lee et al. Chem. Commun., 2015, 51, 10945-10948. And the author also commented the antibody-based proximity labeling mapping works including Daniel Z Bar et al. Nat Methods, 2018, 15, 127-133 in the manuscript.

    We are sorry for the oversight. We have rephrased our sentences in the revised manuscript. In addition, we have also compared our method with the one published in Nat Methods.

    Reviewer #3 (Evidence, reproducibility and clarity (Required)):

    **Summary:**

    • The manuscript by Li and coworkers describe an approach for detecting the PTM specific interacting proteomes through Proximity labeling strategy. In this method, cellular proteomes were first cross-linked by formaldehyde and then incubated with PTM specific antibodies. Afterwards, a protein A-APEX2 fusion protein was added to target the antibody and label the proteins in proximity with biotin. The biotinylated proteins can be enriched and subsequently identified by LC-MS/MS. The authors claim that these proteins are PTM-specific interacting proteins because they are close to the PTM-recognition antibody. They mainly applied the method to the histone marks and identified the interacting proteins for several histone modifications. They found that the identified proteins overlap partially with the published CHIP-seq data and drew complicated interaction networks based the proteomic data using the STRING database. **Major comments:**

    • The APEX technology has been widely used for capturing subcellular proteome or proteome proximal to the target protein of interest. Here the authors aimed to use antibodies specific for detecting certain histone PTMs to guide the APEX enzyme for proximal labeling. While the idea is interesting, the actual applicability is rather limited as APEX does not enable identification of direct interactions. With the current methodology design, the reviewer did not see its advantage over a formaldehyde crosslinking followed by a conventional immunoprecipitation using the PTM-specific antibody. The authors are suggested to compare the head-to-head performance of these two approaches.

    We agree with the reviewer that APEX2 is for proximal labeling and we have rephrased our statement from “binding” or “interaction’ to “proximal”.

    We have compared with the data of published work. (Vermeulen et al., 2010; Villasenor et al., 2020) (Fig. 2A) and we were able to identify most of the proteins identified in the published work. To improve our method, we performed AMPEX under native conditions and still got very robust labeling of nearby proteins, which is an improvement compared to the formaldehyde crosslinking followed by a conventional immunoprecipitation using the PTM-specific antibody method.

    • From the methodological point of view, it is unclear why formaldehyde crosslinking is included here. Neither did the authors justify its necessity for the whole workflow. With treatment with 0.1% formaldehyde for proteome crosslinking, how about physiological status of the cells? Authors should assess survival of cells under formaldehyde treatment. After a long labeling time, will the labeling results still reflect the physiological status of the protein interaction networks in living cells?

    We agree with the reviewer regarding the role of crosslinking in our method. To this point, we have performed AMPEX under native conditions and still got very robust labeling of nearby proteins. On the other hand, crosslinking allows our method to be potentially used for FFPE samples.

    Overall, the manuscript lacks sufficient description on how the pipeline was optimized. For example, does it matter where the APEX2 is fused to protein A? The authors need to do a better job to present their optimization process.

    We found the activity is robust with current pA-APEX2. There is published data that there is only minimal effect on enzymatic activity when APEX2 is fused to Tn5 at different positions, which suggested APEX2’s enzymatic activity is unlikely to be affected by the location of fusion proteins.

    • Crosslinking will result in high background in proximity labeling, in figure 1 D, the signal from IgG is obviously high. Strangely, the background signals completely disappeared in figure 2A. What are the differences between these two experiments? Similarly, in figure S4, the IgG lanes in A, B and C looked quite different from each other. The results suggested that the workflow might not be as robust as the authors have claimed.

    The high background of IgG in Fig. 4A in very possibly caused by the relatively less effective labeling by H3K4me3. As we responded before, we have included news results obtained under native conditions, which reduced background.

    • The authors drew complicated interaction networks for each histone PTMs, however, a comparison between the networks for a modified histone versus the unmodified one is missing. Such data would be more valuable and informative as they can provide new clues on how the PTM mediates different interaction networks for cellular signaling.

    We have performed AMPEX with different Histone modification antibodies, while there are overlaps between these modifications, we could find proximal proteins specific identified by different histone modifications.

    • The manuscript lacks the experimental validation of the identified interaction protein partners. The authors used the published CHIP-seq data, however, the cell lines of CHIP-seq are different from the one they used for APEX labeling. In this regard, an side-by-side comparison of this method with the CHIP-seq results should be performed, in terms of both purification efficiency and specificity.

    To validate our findings, we have purified nucleosomes and performed SF3B1 IP and confirmed the interaction of SF3B1 with H3K5ac. We have also performed mono-nucleosome H3K27me3 IP and confirmed the binding between H3K27me3 and NSD2. We have included these validated results in our revised manuscript.

    • For the proteomic data, reproducibility calculation should use intensity ratio instead of intensity. The high dynamic of signal intensity will mislead the audience. P values between replicates should be calculated, a cutoff of

    We have calculated P values between replicates by t-test and added them in supplementary table s1.

    **Minor comments:**

    • Reference format should be checked. eg. redundant citation, incorrect format etc.

    We have checked our references for the errors and corrected them as many as we can find.

    • Loading controls should be attached along with western blotting results (figure 1d, figure 2A).

    We have included the Ponceau S staining as loading controls of these western blotting results in our revised manuscript.

    • This manuscript lacks clear conclusion or discussions. Subtitles are needed to delineate results. The overall logical organization of this manuscript should be strengthened. Currently, it is quite hard to follow and appreciate which part of the data is more technically novel and biologically significant.

    We have added subtitles and discussion in the revised manuscript.

    • The title is too broad as the authors only showed the application on histone PTMs.

    We have changed our title to “Defining proximity proteomics of Histone modifications by antibody-mediated protein A-APEX2 labeling”.

    • The introduction lacks proper description of other strategies for mapping PTM specific interactome, especially those by photo-affinity peptides or photo-affinity unnatural amino acids.

    We have added the other strategies for mapping PTM specific interactome in the introduction in the revised manuscript.

    Reviewer #3 (Significance (Required)):

    • It is more technical improvement by fusing protein A with APEX2 so that the proximity labeling can be guided around a specific PTM using the proper antibody. Researchers in the field of histone modifications will be interested in the current technique. The reviewer is with expertise in proteomics with focus on PTM analysis. References

    Laitinen OH, Nordlund HR, Hytoenen VP, Kulomaa MSJTiB (2007) Brave new (strept)avidins in biotechnology. 25: 269-277

    Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, Lee KK, Olsen JV, Hyman AA, Stunnenberg HGJC (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. 142: 967-980

    Villasenor R, Pfaendler R, Ambrosi C, Butz S, Giuliani S, Bryan E, Sheahan TW, Gable AL, Schmolka N, Manzo M* et al* (2020) ChromID identifies the protein interactome at chromatin marks. Nat Biotechnol 38: 728-736

    Wilchek M, Bayer EA, Livnah OJIL (2006) Essentials of biorecognition: the (strept)avidin-biotin system as a model for protein-protein and protein-ligand interaction. 103: 27-32

  2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #3

    Evidence, reproducibility and clarity

    Summary:

    The manuscript by Li and coworkers describe an approach for detecting the PTM specific interacting proteomes through Proximity labeling strategy. In this method, cellular proteomes were first cross-linked by formaldehyde and then incubated with PTM specific antibodies. Afterwards, a protein A-APEX2 fusion protein was added to target the antibody and label the proteins in proximity with biotin. The biotinylated proteins can be enriched and subsequently identified by LC-MS/MS. The authors claim that these proteins are PTM-specific interacting proteins because they are close to the PTM-recognition antibody. They mainly applied the method to the histone marks and identified the interacting proteins for several histone modifications. They found that the identified proteins overlap partially with the published CHIP-seq data and drew complicated interaction networks based the proteomic data using the STRING database.

    Major comments:

    1. The APEX technology has been widely used for capturing subcellular proteome or proteome proximal to the target protein of interest. Here the authors aimed to use antibodies specific for detecting certain histone PTMs to guide the APEX enzyme for proximal labeling. While the idea is interesting, the actual applicability is rather limited as APEX does not enable identification of direct interactions. With the current methodology design, the reviewer did not see its advantage over a formaldehyde crosslinking followed by a conventional immunoprecipitation using the PTM-specific antibody. The authors are suggested to compare the head-to-head performance of these two approaches.
    2. From the methodological point of view, it is unclear why formaldehyde crosslinking is included here. Neither did the authors justify its necessity for the whole workflow. With treatment with 0.1% formaldehyde for proteome crosslinking, how about physiological status of the cells? Authors should assess survival of cells under formaldehyde treatment. After a long labeling time, will the labeling results still reflect the physiological status of the protein interaction networks in living cells?
    3. Overall, the manuscript lacks sufficient description on how the pipeline was optimized. For example, does it matter where the APEX2 is fused to protein A? The authors need to do a better job to present their optimization process.
    4. Crosslinking will result in high background in proximity labeling, in figure 1 D, the signal from IgG is obviously high. Strangely, the background signals completely disappeared in figure 2A. What are the differences between these two experiments? Similarly, in figure S4, the IgG lanes in A, B and C looked quite different from each other. The results suggested that the workflow might not be as robust as the authors have claimed.
    5. The authors drew complicated interaction networks for each histone PTMs, however, a comparison between the networks for a modified histone versus the unmodified one is missing. Such data would be more valuable and informative as they can provide new clues on how the PTM mediates different interaction networks for cellular signaling.
    6. The manuscript lacks the experimental validation of the identified interaction protein partners. The authors used the published CHIP-seq data, however, the cell lines of CHIP-seq are different from the one they used for APEX labeling. In this regard, an side-by-side comparison of this method with the CHIP-seq results should be performed, in terms of both purification efficiency and specificity.
    7. For the proteomic data, reproducibility calculation should use intensity ratio instead of intensity. The high dynamic of signal intensity will mislead the audience. P values between replicates should be calculated, a cutoff of < 0.05 or < 0.01 is mostly used in proteome data.

    Minor comments:

    1. Reference format should be checked. eg. redundant citation, incorrect format etc.
    2. Loading controls should be attached along with western blotting results (figure 1d, figure 2A).
    3. This manuscript lacks clear conclusion or discussions. Subtitles are needed to delineate results. The overall logical organization of this manuscript should be strengthened. Currently, it is quite hard to follow and appreciate which part of the data is more technically novel and biologically significant.
    4. The title is too broad as the authors only showed the application on histone PTMs.
    5. The introduction lacks proper description of other strategies for mapping PTM specific interactome, especially those by photo-affinity peptides or photo-affinity unnatural amino acids.

    Significance

    It is more technical improvement by fusing protein A with APEX2 so that the proximity labeling can be guided around a specific PTM using the proper antibody. Researchers in the field of histone modifications will be interested in the current technique. The reviewer is with expertise in proteomics with focus on PTM analysis.

  3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #2

    Evidence, reproducibility and clarity

    This work describes interesting approach for mapping interactome of specifically modified histone protein using antibody-based APEX2. Although it contains interesting results and useful techniques for biological community, I found that it requires revision and addition for the publication.

    I could understand the reason using antibody-based proximity labeling approach for mapping the biomolecules that interact with post-translationally modified histone becuase it should be complicated to map it with exogenous protein expression approach. However, the introduction of antibody-conjugated APEX2 should require fixation and permeabilization steps that can usually compromise ultrastructure. The authors should comment whether these procedures can affect protein composition and structures of nucleosome in the Discussion part of this manuscript.

    For generation of biotin-phenoxyl radical, HRP-conjugated antibody can be utilized as shown in BAR method (Daniel Z Bar et al. Nat Methods, 2018, 15, 127-133). Since secondary-HRP antibody is commercially available, one cannot make an effort to express and purify pA-APEX2 for this approach. The autrhos should clearly explain why they selected APEX2 and what is an expected advance(s) using APEX2 in their approach.

    For the detection of the APEX-mediated biotinylated proteins, direct mass identification of tyrosine-modified peptides with chemical probes can tell the most correct information of the proximal proteins (see Lee SY et al. J. Am. Chem. Soc. 2017, 139, 3651-3662; Namrata D Udeshi et al. Nature Methods 2017, 14, 1167-1170). Thus, if the authors can obtain the biotin-modified peptide information from each antibody-conjugated APEX2, the quality of their interactome results should be much improved. If authors may be under the situation that cannot conduct further mass experiments, it might be required to check whether their important finding molecules (e.g. Arid2, Brd7, Nsd2) are really "biotinylated" by conducting Streptavidin-HRP western blot experiment after enrichment of those proteins by using primary antibody. If biotinylation is specifically conducted by pA-APEX2 with H3K27me3 antibody, the authors can observe SA-HRP blot signal on the enriched protein band on the membrane. Negative controls should be the samples omit pA-APEX2, H3K27me3 antibody, biotin-phenol, H2O2, respectively or using different PTM targeted primary antibody. This result can confirm that their findings are enriched from proximity-dependent biotinylation of APEX2, not from spurious binding events to the other biotinylated proteins or self-labeled bait proteins.

    Significance

    For antibody-binding APEX2 strategy, this work is not the first one and the authors should mention the precedent work in the manuscript: Jisu Lee et al. Chem. Commun., 2015, 51, 10945-10948. And the author also commented the antibody-based proximity labeling mapping works including Daniel Z Bar et al. Nat Methods, 2018, 15, 127-133 in the manuscript.

  4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #1

    Evidence, reproducibility and clarity

    Summary:

    In this article, Li and colleagues demonstrate the utility of a novel proximity labeling-based strategy, which they term AMAPEX (antibody-mediated protein A APEX) for the proteomic characterization of the protein environment of specific histone modifications. They apply this new methodology in mouse embryonic fibroblasts for subsequent purification of biotinylated proteins and mass-spectrometric identification.

    Major comments:

    • The authors present a high quality, descriptive manuscript that introduces a novel proximity labeling approach from a mostly technical point of view. The presentation of the data and methods are mostly clear, such that they should be easy to reproduce.

    • The biggest shortcoming of the study in its current form seems to be the lack of a proper assessment of the method's sensitivity AND -most importantly also- specificity. The authors do not validate potentially new interactors of the modified histones experimentally, which would highlight their technology as a discovery tool. Without the assessment of newly identified proteins, these could simply represent false positives, which would point towards an additional requirement for optimization of the experimental setups. In that light the newly identified proteins are merely potential histone interactors. Validation would require establishment or purchase of additional antibodies, or alternatively cloning and transfection of respective candidates, which will probably take an extra 2-3 months of work. While the study may be publishable in its current form, this validation seems a valuable investment to strengthen the preliminary conclusions.

    • With two biological replicates the study fulfills the minimum requirements for reproducibility, however, it would benefit from an additional replicate.

    Minor point:

    • The sentences in lines 22f (and 44f) could be misunderstood. Please rephrase statements to be unambiguous that it specifies the proteomic surrounding of post-translationally modified proteins. The proximity labeling technologies may themselves be limited in identifying post-translationally modified proteins, as they label reactive side-chains that are often targeted by PTMs. Post-translationally modified lysine residues cannot be targeted by biotin ligase-based methodologies, as tyrosine phosphorylations cannot be assessed by peroxidase-based labeling.

    Significance

    • From a technical point of view, most of the key conclusions of this paper are convincing. Assessing the proteomic environment of post-translationally modified proteins is of extremely high interest and the methodology seems broadly applicable to address such questions. It should be noted that proximity labeling has not originally been utilized to map protein-protein interactions, as the enzymatic activities available probe their surroundings, this could be an over-interpretation. Nonetheless, the "proteomic surrounding" of target proteins, which would also include hard to identify transient interactions is of high general interest for molecular biologists.

    • Although it can be generally agreed that having to express an exogenous fusion protein is a limitation of current proximity labeling setups, the methodology presented here in turn has the limitation that it cannot be performed in living cells, which is a significant disadvantage.

    • My lab is establishing and constantly improving various proximity labeling methodologies in combination with mass spectrometry for sub-organellar proteomics. While the technology is sound and well executed, I am not an expert in the biology of histone modifications and the proteins involved and cannot assess the novelty nor the actual value of the generated datasets. It appears to me though that additional validation by independent experiments would strengthen the manuscript. The authors describe the usefulness of the technology mainly in confirming known interactors of modified histones, however, it would be nice (for non-specialists) to explicitly state how high the coverage of the known interactors is and discuss why some of them might have been missed.

    • The manuscript in its current form completely lacks a discussion of the presented data. Even if the focus will remain on the technical aspects, the findings should be properly discussed by comparison to other proteomics approaches studying histones. Ideally the data should also be discussed in the light of current proximity labeling technologies and potential future directions.

    • While I cannot assess the value for histone research, the manuscript will be very interesting for experts focusing on proximity labeling technologies and subcellular proteomics.