Development of a predictive prognostic rule for early assessment of COVID-19 patients in primary care settings

This article has been Reviewed by the following groups

Read the full article

Abstract

No abstract available

Article activity feed

  1. SciScore for 10.1101/2020.12.11.20247932: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board StatementIRB: The study was approved by the Ethical Committee of the Institution (Ethics Committee IDIAP Jordi Gol, Barcelona, file 20/065-PCV) and was conducted in accordance with the general principles for observational studies.
    Consent: (19) The study was determined to be exempt for informed consent under the public health surveillance exception.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The analyses were performed using IBM SPSS Statistics for Windows, version 24 (IBM Corp.,
    SPSS
    suggested: (SPSS, RRID:SCR_002865)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    As major limitations, our study was conducted in a single geographical area with specific epidemic conditions (relatively low incidence of COVID-19) in a limited time period (first wave of pandemic) and focused exclusively on community-dwelling people over 50 years.(18) We don’t know the possible influence that changes in study population and/or epidemic intensity could have on the statistics reported here. We also note that the relatively little sample size (282 cases with 64 outcomes in our study) building prediction models may increase the risk of overfitting the model, which implies that the performances of the models in new samples could be worse. We underline that a further validation in an external cohort is necessary before a routine use of the described prognostic rules may be applied. We note, however, that prediction models are needed to support medical decision managing COVID-19 patients. There are several published or preprint reports that developed prognostic rules predicting critical outcomes (need of mechanical ventilation and/or death), but all of them were based on complementary explorations or laboratory findings which are not generally available in ambulatory or primary care settings.(17) Main contribution of this study lies in the fact that it reports simple clinical prognostic rules including easily accessible clinical data (such as demographics, pre-existing comorbidities and early symptomatology), which could be very helpful assessing COVID-19 patients...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.