Estimating the Impact of Daily Weather on the Temporal Pattern of COVID-19 Outbreak in India

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

The COVID-19 pandemic has spread obstreperously in India. The increase in daily confirmed cases accelerated significantly from ~ 5 additional new cases (ANC)/day during early March up to ~ 249 ANC/day during early June. An abrupt change in this temporal pattern was noticed during mid-April, from which can be inferred a much reduced impact of the nationwide lockdown in India. Daily maximum ( T Max ), minimum ( T Min ), mean ( T Mean ) and dew point temperature ( T Dew ), wind speed (WS), relative humidity, and diurnal range in temperature and relative humidity during March 01 to June 04, 2020 over 9 major affected cities are analyzed to look into the impact of daily weather on COVID-19 infections on that day and 7, 10, 12, 14, 16 days before those cases were detected (i.e., on the likely transmission days). Spearman’s correlation exhibits significantly lower association with WS, T Max , T Min , T Mean , T Dew , but is comparatively better with a lag of 14 days. Support Vector regression successfully estimated the count of confirmed cases ( R 2  > 0.8) at a lag of 12–16 days, thus reflecting a probable incubation period of 14 ± 02 days in India. Approximately 75% of total cases were registered when T Max , T Mean , T Min , T Dew , and WS at 12–16 days previously were varying within the range of 33.6–41.3 °C, 29.8–36.5 °C, 24.8–30.4 °C, 18.7–23.6 °C, and 4.2–5.75 m/s, respectively. Thus, we conclude that coronavirus transmission is not well correlated (linearly) with any individual weather parameter; rather, transmission is susceptible to a certain weather pattern. Hence multivariate non-linear approach must be employed instead.

Article activity feed

  1. SciScore for 10.1101/2020.06.15.20131490: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.