Cold traps as reliable devices for quantitative determination of SARS-CoV-2 load in aerosols

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Spread of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is a demanding challenge. This is of particular importance in schools and public areas of unavoidable access. New viral mutations may increase infectivity and require even better methods to identify areas of potential hazards. High-throughput SARS-CoV-2 testing and legal restrictions are not effective in order to get the current outbreak under control. The occurrence of new SARS-CoV-2 variants with a higher transmissibility requires efficient strategies for early detection and surveillance. Until today, testing focuses on nasal or pharyngeal mucosa swabs, neglecting the origin of aerosolic transmission, thus failing to detect the spread by carriers of the virus. Therefore, in this study, SARS-CoV-2 RNA levels were determined by quantitative real time PCR in aerosols collected by non-powered cold traps. SARS-CoV-2 spreading kinetics were recorded in indoor hotspots within a high-endemic area. These hotspots included a SARS-CoV-2 isolation unit, an outpatient endoscopy facility, a concert hall, and a shopping mall. For determination of viral presence aerosols were collected by cold traps positioned at different locations in the area of interest over a period of 4–6 h. Indoor SARS-CoV-2 hotspots were found in non-ventilated areas and in zones that are predisposed to a buoyancy (chimney) effect. SARS-CoV-2 RNA in those aerosols reached concentrations of 10 5 copies/mL, while extensive outdoor air ventilation reliably eliminated SARS-CoV-2 aerosol contamination. The method presented herein is effective for the identification of SARS-CoV-2 indoor hotspots and may help to characterize the spreading kinetics of SARS-CoV-2. Moreover, it can be used for the surveillance of emerging SARS-CoV-2 variants. Due to low costs and easy handling, the procedure might enable efficient algorithms for COVID-19 screening and prevention.

Article activity feed

  1. SciScore for 10.1101/2021.01.19.21250064: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    SARS-CoV-2 Standard (Exact Diagnostics, Fort Worth, TX, USA obtained by Bio-Rad Laboratories, Feldkirchen, Germany) was used as external standard in each run.
    Bio-Rad Laboratories
    suggested: (Bio-Rad Laboratories, RRID:SCR_008426)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.